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Inspired by recent experimental observations of patterning at the membrane of a living cell, we propose a
generic model for the dynamics of a fluctuating interface driven by particlelike inclusions which stimulate
its growth. We find that the coupling between interfacial and inclusions dynamics yields microphase
separation and the self-organization of traveling waves. These patterns are strikingly similar to those
detected in experiments on biological membranes. Our results further show that the active growth kinetics
do not fall into the Kardar-Parisi-Zhang universality class for growing interfaces, displaying instead a novel
superposition of scaling and sustained oscillations.
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Active membranes and interfaces have revealed fasci-
nating complex pattern formation and nontrivial dynamical
features [1–3]. An interface is termed active when its
dynamics violate detailed balance due to the presence of
local nonthermal forces. A paradigmatic example is that of
the plasma membrane of an eukaryotic cell, which is driven
far from equilibrium by its constant interaction with ion
channels, membrane proteins, and the actin cytoskeletal
network [4], all of which are intimately coupled to the
membrane fluctuations [5,6].
Recent experiments have unveiled a wide variety of

organized dynamical structures formed within the plasma
membrane of crawling cells. Membrane-binding proteins
such as GTPases of the Rho and Ras families, for instance,
form dynamic nanoclusters [7–9], while ripples develop on
the membrane itself and surf as a traveling wave [10–12].
A generic picture accounting for the emergence of all these
structures is still lacking. Could the fact that the proteins
activate growth be the underlying cause of such a complex
scenario?
In this work, we explore this possibility by introducing a

minimal nonequilibrium model for pattern formation in a
system of active inclusions embedded in an active interface.
The feedback between such particlelike inclusions and the
interfacial dynamics, rooted in experimental observations,
assumes the membrane motion to be regulated by trans-
membrane proteins [15], which, in turn, are coupled to the
membrane local shape [16]. The mechanism we identify
relies on activity alone and dispenses with the need for
nonlinear biochemistry as invoked previously in models
assuming an underlying activator-inhibitor dynamics
[8,17]. We also stress that the mechanism requires no
assumption on the polar patterns which may be formed by
the underlying actin cortex [10]: all that is required is
polymerization normal to the surface. Besides being
relevant to pattern formation on eukaryotic membranes,

our model extends the problem of semiautonomous sys-
tems, such as randomly advected passive scalar fields [18]
or passive sliders on fluctuating interfaces [19,20], into the
active matter realm.
First, we show that the inclusion-interface coupling

provides a generic route to patterning along with microphase
separation and waves. This is a general result, which does
not depend on fine-tuning of model parameters. We further
provide a simple theory based on the analysis of shock and
rarefaction waves, which, on the one hand, correctly predicts
the numerically observed scaling of cluster size and wave
velocity with the model parameters, and, on the other hand,
reveals the intimate connection between clustering, waves,
and the underlying motion of the interface. Importantly, the
feedback requires noise to be effective, as only damped
waves survive in a mean-field deterministic framework (see,
e.g., Ref. [21]). Second, our work suggests that an actively
growing interface cannot be described by the Kardar-Parisi-
Zhang (KPZ) equation [22], which successfully represents
the universal features of the passive case. Instead, we find
nontrivial sustained oscillations in the roughening dynamics,
which could be the key signature to look for in future
experiments with active membranes.
As the leading edge of a crawling cell is an essentially

1D object, we model the fluctuating interface as a directed
random walk in ð1þ 1ÞD (Fig. 1). The dynamics, as in
standard models of stochastic growth, entail only local
single-step moves [23]. Pictorially, the interface comprises
positive and negative slopes = and n joining L sites. Each
downward kink ∨ transforms into an upward one ∧ (and
vice versa), at rate pþ (p−) (see Fig. 1). The inclusions in
the interface break detailed balance by stimulating interface
growth (i.e., biasing its motion toward the top in Fig. 1).
This is inspired by the upregulation of actin polymerization
due to Rho GTPases such as Rac1 and Cdc42 [15]. Note,
however, that we are not considering any specific function
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(except growth stimulation) or shape for the inclusions,
as done, for instance, in Ref. [6] with asymmetric pumps.
We set

p� ¼ pð1� λniÞ; ð1Þ

where ni is the number of inclusions at the ith site. With
this choice, growth is favored on occupied sites, as
pþ − p− ∝ λni, and we can control its strength by varying
λ ≥ 0. Setting λ ≠ 0 is the key ingredient that makes our
interface active and our problem different from the semi-
autonomous systems cited above.
Additionally, N inclusions diffuse and are advected by

the interfacial slope, mimicking the coupling of protein
transport to local surface curvature observed for several
membrane-binding proteins [16,21]. We consider a
“curvophobic” coupling, where proteins tend to drift
toward regions of negative curvature. Each inclusion jumps
independently left or right with rates qþ and q−,

q� ¼ q

�
1� γ

2
∇hi

�
; ð2Þ

where ∇hi ¼ ðhiþ1 − hi−1Þ=a, so that γ measures the
strength of the slope-mediated advection. We highlight
here that the feedback between inclusions and interface
dynamics is realized only when both λ and γ are greater
than 0, making γ a key ingredient of our model. We set the
unbiased rates p and q (obtained when γ ¼ λ ¼ 0) to 1,
implying comparable time scales of inclusion and interface
dynamics, and the global particle concentration to 1 (i.e.,
N ¼ L). As explained in the Supplemental Material [24],
the specific values of such parameters do not alter the
physics of the system unless pushed to extreme values. This
set of update rules augmented with periodic boundary
conditions leads to stochastic dynamics for the active
interface-inclusions system.
Figure 2 shows typical snapshots of the interface profile

and inclusion distribution as a function of time, when γ
and λ are both strictly positive (for more details of the
simulation methods, see the Supplemental Material [24]).

Initially, the surface is flat and inclusions are uniformly
distributed (bottom snapshot). Later on, the interface
roughens and inclusions accumulate in valleys (center
and top snapshots). They do so since γ > 0 favors advec-
tion toward regions with negative curvature (valleys).
Interestingly, clusters are also strongly affected by λ. In
the λ → 0 limit, our model reduces to the passive problem
considered in Ref. [26], where particles slide on an
equilibrium fluctuating interface. In this limit, the density
fluctuations grow in time so as to reach a steady state,
scaling with the system size L as L0.6 (Fig. 2, inset),
consistent with numerical predictions [26]. Notably, as
soon as active growth is turned on (λ > 0), we find a
completely different scenario in which the steady-state
density fluctuations no longer scale with L (Fig. 2, inset).
It is also useful to compare our results to those obtained

in Refs. [19,20,27], where particles slide either on a KPZ or
equilibrium interface. The former case corresponds to the
limit λni → λ of Eq. (1), which removes the local concen-
tration dependence in the interface dynamics. In both these
passive cases, inclusions aggregate in interface valleys in a
fluctuating fashion due to the noise-induced flipping of
valleys. As a result of this phase separation, the steady-state
density fluctuations scale as a power of the system size L.
Conversely, the absence of scaling we observe means that
the clusters reach a self-limiting size. In other words, the
active growth term λni leads to noisy microphase (rather
than macrophase) separation. The mechanism underlying
cluster formation is that advection promotes particle
congregation in valleys. The clustering cannot proceed

p

p (1-λ)

p (1+3λ)

FIG. 1. Schematics of our active interface- (black solid line)
inclusions (red circles) model. Dashed lines denote the moves
defining our interface updating rule. The detailed-balance break-
ing action of the inclusions enhances the growth rate (thicker
upward arrow) and hampers the reverse move (thinner downward
arrow) proportionally to the local number of inclusions.

0 200 400 600 800 1000
0

3

10

30

FIG. 2. Snapshots of a fluctuating interface of size L ¼ 1000
with N ¼ L inclusions, at three different times t1 < t2 < t3. As
time passes, the membrane roughens and particles form clusters
marked by the red spots on the interface profile. Here, γ ¼ 1
while λ ¼ 0.01 so as to enhance visibility of clusters, but the same
scenario is observed for each value of γ; λ > 0. The inset shows
the inclusions number variance [average of ðni − L−1 PL

j¼1 njÞ2
over several realizations of the noise] in steady state, together
with the λ ¼ 0 limit. The absence of scaling with system size L
for λ > 0 signals arrested coarsening and microphase separation.
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indefinitely, however, as inclusions stimulate the growth of
a local “bump” in the interface, which eventually drives
them away, arresting coarsening. The higher λ is, the sooner
we expect the cluster to disperse, and the smaller its size:
this is what we find numerically. Intriguingly, clustering
requires thermal fluctuations; a mean-field deterministic
description of our model leads to an advancing flat interface
with no patterning at late times.
We now turn to the dynamics in the microphase

separated state. The argument above suggests that clusters
tend to move away from the bumps they generate.
Remarkably, these small aggregates self-organize into
traveling waves accompanied by membrane ripples. The
resulting membrane waves are readily visible in the kymo-
graph in Fig. 3. The traveling waves in the inclusion density
profiles are shown in Fig. 3, top panel, and a sketching of
the mechanism for wave generation is shown in the bottom
panel. When λ > 0, a cluster of inclusions creates a bulge in
the interface (left side of panel). Since γ > 0, inclusions
will be pushed to the two regions of negative curvature on
the sides of the bump (center of panel) and generate new
bumps resulting in the lateral spreading of membrane
protrusion (right side of the panel). To understand quanti-
tatively how wave speed and cluster size scale with γ and λ,

we consider a large-scale description of the system
obtained by a suitable coarse graining of the interface
profile and inclusion density. This analysis is inspired by
the theory of shallow water waves [28]. Using a standard
procedure (see the Supplemental Material [24]), one may
derive the following stochastic partial differential equations
for the coarse-grained inclusion density field nðx; tÞ and
interface height hðx; tÞ,

∂tn ¼ γ∂xðn∂xhÞ þ a∂2
xnþ ξc;

∂th ¼ λn½1 − ð∂xhÞ2� þ a∂2
xhþ η; ð3Þ

where a is the lattice spacing of the microscopic model.
Both ξc and η in Eq. (3) are Gaussian, whereas ξc is the
divergence of a random current, so as to ensure conserva-
tion of the number of inclusions. Note that these equations
can be deduced on general symmetry grounds at the price
of losing the relation between the coefficients and the
microscopic model parameters [29]. The active terms in
the height equation are those controlled by the inclusion
density nðx; tÞ at variance with early models such as
Ref. [1] where activity enters as colored noise.
Clusters and traveling waves emerge as shock solutions

in the inviscid limit (a → 0) of the deterministic version of
Eq. (3). By introducing the slope variable u≡ ∂xh, Eq. (3)
acquires the structure of a hyperbolic set of conservation
laws [30],

∂t

�
n

u

�
þ ∂x

�−γnu
−λn

�
≡ ∂tv þ ∂xfðvÞ ¼ 0; ð4Þ

where we introduced a vectorial notation and further
neglected the KPZ nonlinearity, so as to highlight that
our patterns are generated by activity alone. We will show
that neglecting the KPZ term gives reasonable results,
although its relevance for other aspects of the model is
an open question. We call F the matrix with elements
Fμν ¼ ∂fμ=∂vν, and ζμ, rμ its v-dependent eigenvalues,
and corresponding right eigenvectors (μ, ν ¼ 1, 2). For
each positive value of γ and λ, F obeys the genuine
nonlinearity condition ð∂ζμ=∂vÞ · rμ > 0 [30]. As a con-
sequence, Eq. (4) admits rarefaction fan and shock wave
solutions in the whole λ; γ > 0 range of parameters. Such
solutions can be explicitly obtained by studying the
corresponding Riemann problem, i.e., Eq. (4) on an infinite
domain with a Heaviside-function initial condition v ¼ vl
for x < 0, vr for x > 0, then using the outcomes as building
blocks for the full problem. In a shock wave, for instance,
the initial discontinuity travels ballistically with a fixed
speed σ depending on initial state, as well as γ and λ.
Two conditions are required for a shock wave to develop.

One is the Rankine-Hugoniot condition relating the wave
speed to the currents across the shock front,
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FIG. 3. Top: Kymograph of the inclusion density (represented
by color) in a portion of an L ¼ N ¼ 10 000 system, λ ¼ γ ¼ 0.3
in steady state. The light colored (red) lines indicate the lateral
traveling density waves described in the text. Middle: The waves’
speed is measured by the slope of these lines and plotted against
λγ to match the prediction of our large-scale theory (see text).
Bottom: Pictorial representation of wave generation in our model.
Each sketch depicts the current (solid line, filled circles) and
previous (dashed line, empty circles) configuration.
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σ½½v�� ¼ ½½fðvÞ��;

where ½½:�� denotes the size of the discontinuity across the
shock. The other is the requirement that the interfacial slope
on the right of the shock wave is higher than that on the left,
as shock waves arise within valleys. A representative case is
the evolution of a valley uniformly filled with particles,
ul ¼ −1, ur ¼ 1, nl ¼ nr ¼ 1. The slope and density fields
at later times are given by [31]

(uðx; tÞ; nðx; tÞ) ¼

8>><
>>:

ð−1; 1Þ; x < −
ffiffiffiffiffi
γλ

p
t;

ð0; 1þ ffiffiffiffiffiffiffi
γ=λ

p Þ; jxj < ffiffiffiffiffi
γλ

p
t;

ð1; 1Þ; x >
ffiffiffiffiffi
γλ

p
t;

ð5Þ

so that a typical wave speed σ is readily identified as the
shock speed, and we can interpret a typical cluster size s as
the excess density of the cluster

σ ∼
ffiffiffiffiffi
γλ

p
; s ∼

ffiffiffiffiffiffiffi
γ=λ

p
: ð6Þ

Remarkably, the predicted scaling (6) captures that seen
numerically (Fig. 3, top panel, and Fig. 4). The scaling of
the cluster size s (6) explains why the case λ ≠ 0 leading to
microphase separation and clustering is fundamentally
different from the singular passive limit [10], where cluster
size diverges. Additionally, our theory suggests that all
systems with nonzero λ and γ display equivalent features.
Notably, these deterministic shock waves decay diffusively
as soon as a ≠ 0 [30], so that noise is required to sustain
them in steady state by continuously generating kinks
which create further shocks.

Finally, we measured the interface width

w2ðL; tÞ ¼ 1

L

�Z
L

0

dx

�
hðx; tÞ − 1

L

Z
L

0

dxhðx; tÞ
�

2
�
:

The initial growth of w2ðL; tÞ defines the exponent β via
wðL; tÞ ∼ tβ, whereas the steady-state value wSSðLÞ defines
the exponent α through wSSðLÞ ∼ Lα, with L the system
size. If λ ¼ 0, the interface dynamics decouples from
the inclusions, and its width grows as in the Edwards-
Wilkinson (EW) model, with β ¼ 1=4 and α ¼ 1=2. If
λ ≠ 0 and the protein density is uniform, the dynamics is
described by the KPZ scaling, β ¼ 1=3 and α ¼ 1=2.
Intriguingly, the growth of our active interface reverts to
an EW growth law for the width but with sustained
oscillations superposed (Fig. 5).
The width oscillations we observe are a novel phenome-

non, intimately coupled to the underlying wavelike dynam-
ics of the inclusions. When clusters form, the interface
growth is dominated by the inhomogeneous active con-
tribution; hence, it is faster than in the noise-driven passive
(EW) case [1]. This corresponds to the rising curve of the
oscillation. Once clusters start to move, their associated
ripples surf the interface and progressively smoothen it.
This results in a significant decrease in the width.
Dimensional analysis suggests that the oscillation period
should scale as the ratio between a length scale and the
shock wave speed. Our numerics confirm this and show the
length scale to be the interface length L (Fig. 5, inset). This
implies that clusters move a finite fraction of the whole
system independently of their size. Strikingly, simulations
also suggest that the oscillation period is of the same order
of the time for microphase separation to occur (measured
through the saturation of density fluctuations), supporting
the idea that the latter takes place through wave collisions.
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FIG. 4. Semilog plot of the cluster distribution function (CDF)
of protein clusters for an L ¼ N ¼ 5000 system, γ ¼ 1.0 and λ as
in the key. The exponential tail implies a typical cluster size,
which does not vary with L: this is the hallmark of microphase
separation. In the inset, this typical size is plotted against γ=λ
together with the prediction of our theory (red line), showing
again remarkable agreement.
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FIG. 5. Oscillating component of the squared interface width
for an L ¼ N ¼ 30 000 system, λ ¼ 0.6 and γ ¼ 0.25. Nonlinear
oscillations are manifest once the Edwards-Wilkinson term t2β,
β ≃ 1=4 is subtracted. The inset shows the dependence of the
period on model parameters and system size.
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To conclude, we have shown how minimal feedback
between a system of particles and a growing interface can
lead to spatiotemporal patterns reminiscent of membrane
waves [8,9] and protein nanoclusters [10,32]. The mecha-
nism relies on interfacial noise, which, by generating kinks
in the interface profile, seeds an inclusion cluster, which in
turn, produces a kinematic wave due to feedback between
inclusion and interface dynamics. Furthermore, we have
found the active interface roughening to consist of a scale-
invariant component well described in 1D by Edward-
Wilkinson exponents but with superposed oscillations
whose features are determined by the collective behavior
of the system components. Our theory predicts scaling
relations (6) for the features of the kinematic waves and
microphase separation which can be experimentally
checked, provided an estimate of λ and γ can be made
[33]. To what extent such features are retained in 2D is a
question to be addressed in future work. Preliminary results
of an extension of our stochastic dynamics to 2D (see the
Supplemental Material [24] for details) do suggest the
occurrence of microphase separation. However, 2D affords
a variety of extensions of the model due to the tensorial
nature of curvature, and it would be of interest to explore
further the different possibilities.
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