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The thermal Hall conductance in the half-filled first Landau level was recently measured to take the
quantized noninteger value κxy ¼ 5=2 (in units of temperature times π2k2B=3h), which indicates a non-
Abelian phase of matter. Such exotic states have long been predicted to arise at this filling factor, but the
measured value disagrees with numerical studies, which predict κxy ¼ 3=2 or 7=2. We resolve this
contradiction by invoking the disorder-induced formation of mesoscopic puddles with locally κxy ¼ 3=2 or
7=2. Interactions between these puddles generate a coherent macroscopic state that exhibits a plateau with
quantized κxy ¼ 5=2. The non-Abelian quasiparticles characterizing this phase are distinct from those of
the microscopic puddles and, by the same mechanism, could even emerge from a system comprised of
microscopic Abelian puddles.
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Introduction.—The fractional quantum Hall (FQH) state
at a Landau level filling factor ν ¼ 5

2
was the first exper-

imentally observed even-denominator state [1]. Soon after
its discovery, pairing was suggested to play an important
role in its formation [2,3], and several candidate paired
states were proposed [2–7]. While the topological proper-
ties of these states have been thoroughly studied theoreti-
cally, their identification for the experimentally realized
ν ¼ 5

2
has proven difficult [8]. Numerically, exact diago-

nalization [9–15] and density matrix renormalization group
(DMRG) studies [16,17] point towards the non-Abelian
Pfaffian state, proposed by Moore and Read [2,3], and its
particle-hole (PH) conjugate (the “anti-Pfaffian” [6,7]) as
the most likely ground states.
Several experiments were carried out to differentiate

between the candidate states. These include tunneling into
the edge [18–21], noise measurements to probe the quasi-
particle charge [22] (found to be e� ¼ e=4) and the
existence of upstream neutral modes [23,24], interference
[25], and—most recently—a measurement of the thermal
Hall conductance [26]. The most unambiguous among
these is the thermal Hall conductance, a topologically
protected property whose quantized value differs between
the candidate states. It was found experimentally to be
κxy ¼ 5=2 (in units of temperature times π2k2B=3h) [26]. Its
half-integer value identifies the state as non-Abelian. It is,
however, inconsistent with both Pfaffian and anti-Pfaffian,
for which the values 7=2 and 3=2 are expected. Rather, 5=2
is consistent with a non-Abelian state coined as the particle-
hole Pfaffian (PH-Pfaffian), also known as T-Pfaffian
[27–31] in the context of topological insulator surfaces.
This phase first appeared in [7], and was recently reinter-
preted in the context of Dirac composite fermions [32]. A

prototypical wave function was proposed in [33], which
also argued PH-Pfaffian to be most likely in light of earlier
experiments. The (113) state [34] with κxy ¼ 2 was also
suggested, but deemed less likely.
Here we propose a resolution to the discrepancy between

numerical predictions and experimental results. We focus
on an ingredient that is undeniably present in experimental
systems, but absent in numerical studies: quenched dis-
order. The possible stabilization of the PH-Pfaffian phase
by disorder was suggested in [33]. We start with the
observation that when PH symmetry is present, i.e., without
Landau-level mixing, Pfaffian and anti-Pfaffian are degen-
erate at ν ¼ 5

2
. Spontaneous breaking of PH symmetry then

determines which phase is realized. Deviating from this
filling explicitly breaks PH symmetry and additionally
introduces quasiparticles. In particular, if one phase pre-
vails for ν > 5

2
, its PH partner must be realized for ν < 5

2
.

With Landau-level mixing, PH is only an approximate
symmetry at any filling and we expect the transition
between the two phases to become shifted to ν� ≈ 5

2
. For

ν ¼ ν� þ δν, we assume that δν < 0 favors Pfaffian while
δν > 0 favors anti-Pfaffian.
In the presence of smooth density variations, we expect

puddles of Pfaffian and anti-Pfaffian to form, whose size is
much larger than the magnetic length, but smaller than the
sample size. The disorder-induced puddle formation is
strictly justified in the limit of zero-Landau level mixing
where it follows from the statistical PH symmetry com-
bined with a well-known argument by Imry and Ma [35]
(see also [36]). We assume the same qualitative picture
applies in the experimental systems without exact PH
symmetry. The electronic Hall conductance is σxy ¼
5
2
ðe2=hÞ independent of the relative areas occupied by
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the two phases, since both have identical σxy. In contrast,
κxy is determined by the predominant phase to be either

κPfaffianxy ¼ 7=2 or κAntipf:xy ¼ 3=2.
Our main result, summarized in Fig. 1, is that disorder

splits the direct transition into a sequence of four tran-
sitions, each characterized by a change of 1=2 in κxy.
Between the transitions, κxy is sharply quantized to the
values 3=2, 2, 5=2, 3, and 7=2. For weak disorder the filling
factor ν functions as a tuning parameter that drives the
system across the four continuous quantum phase transi-
tions. For fixed ν but increasing disorder strength, the
system may transition into a thermal metal phase [37–41]
with nonquantized κxy.
Pfaffianology.—Five candidate states for ν ¼ 5

2
are rel-

evant to the present work, each hosting multiple edges
modes that interact among themselves. Beyond a length
scale leq the edge modes reach mutual equilibrium, at
which point the state achieves a quantized thermal Hall
conductance [42].
We will henceforth assume that all relevant length scales

exceed leq. (The values of leq, as well as other microscopic
length scales, are nonuniversal and difficult to estimate.
Fortunately, these values are not crucial for our analysis; we
will return to this point after explaining the phase diagram.)
All these states have two chiral (ν ¼ 1) electron edge

modes of the two filled Landau levels, each contributing
σxy ¼ 1 and carrying central charge c ¼ 1 and one cop-
ropagating (ν ¼ 1

2
) charge mode contributing σxy ¼ 1

2
and

carrying c ¼ 1; these modes contribute the required elec-
trical Hall conductance, and a thermal Hall conductance of
κxy ¼ 3. The states differ by the number nM of neutral
Majorana modes (negative numbers indicate upstream
modes), which determines the total thermal Hall conduct-
ance to be κxy ¼ 3þ nM=2. The values of nM for all
relevant phases are listed in Table I, and the edge modes

of the non-Abelian phases are depicted in Fig. 2. Notice
that only PH-Pfaffian (nM ¼ −1) is compatible with PH
symmetry under which κxy−κν¼2

xy →1−ðκxy−κν¼2
xy Þ, with

κν¼2
xy ¼ 2. The corresponding edge states can be succinctly
expressed in terms of their Lagrangian density Lχ

vac.-QH ¼
Lχ
c þ Lχ

n½nM� with

Lχ
c ¼ 1

4π

X

ij

½χKij∂tϕi∂xϕj − Vijð∂xϕiÞð∂xϕjÞ�;

Lχ
n½nM� ¼

XjnM j

i¼1

γi½∂t − χsgnðnMÞv∂x�γi; ð1Þ

where ϕ are bosonic modes and γ are Majorana fermions; V
is positive definite, K ¼ diagð1; 1; 2Þ, v > 0, and χ ¼ �1
(determining the chirality of the edge modes). An overview
of the various edge modes appears in [43] (see also Fig. 6 in
the extended material of [26]).
Disorder and network model.—We consider a disorder

potential that is sufficiently weak and/or smooth that the
results of numerical studies apply locally and favor the
formation of Pfaffian or anti-Pfaffian puddles; see Fig. 3(a).
The Pfaffian–anti-Pfaffian boundary is captured by [44]

Lχ
Pf.-APf. ¼ Lχ

c þ Lχ
n½1� þ L−χ

c þ L−χ
n ½−3�: ð2Þ

Notice that when two quantum Hall states are separated by
vacuum, fractional excitations cannot tunnel between the
two. Still, the nonchiral Lagrangian of the charge modes
Lχ
c þ L−χ

c can be gapped by sufficiently strong tunneling
of (pairs of) electrons across the Pfaffian–anti-Pfaffian
boundary [44]. This “stitches together” the two quantum

FIG. 1. Proposed phase diagram of the approximately half-
filled first excited Landau level. Without disorder, the ground
state is either Pfaffian or anti-Pfaffian, depending on whether the
system is more particlelike ðν≲ ν�Þ or holelike ðν≳ ν�Þ with an
expected first-order transition at ν ¼ ν� ≈ 5

2
. With disorder, this

transition splits into four continuous phase transitions where the
thermal Hall conductance changes by Δκxy ¼ 1=2. For even
stronger disorder, the system may enter a thermal metal, with
nonquantized κxy. In contrast, the electrical Hall conductance
σxy ¼ 5

2
ðe2=hÞ remains quantized across these transitions.

TABLE I. Summary of ν ≈ 5=2 phases relevant for our dis-
cussion. The number nM of Majorana modes determines the
thermal Hall conductance according to κxy ¼ 3þ nM=2.

QH phase Pfaffian K ¼ 8 PH-Pfaffian (113) anti-Pfaffian

nM 1 0 −1 −2 −3
κxy 7=2 3 5=2 2 3=2

FIG. 2. Possible edge modes of three kinds of Pfaffian phases.
All three phases have identical charge modes, but differ in the
number and chirality of neutral Majorana modes (indicated by the
number and direction of arrows) and consequently in their
thermal Hall conductance.
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Hall states and permits fractional excitations to traverse.
However, the neutral Majorana fermions copropagate and
thus cannot be gapped out. Instead, the neutral terms in
Eq. (2) combine into Lχ

n½4�. Consequently, the Pfaffian–
anti-Pfaffian boundary is described by four copropagating
Majorana fermions, which have an Oð4Þ symmetry of
rotating between them.
Our proposed model to describe a disordered ν ¼ 5

2
system may be viewed as a checkerboard of alternating
Pfaffian and anti-Pfaffian states as shown in Fig. 3(b), with
random scattering at each vertex. (This is a generalization
of the Chalker-Coddington network model, which has been
highly successful in describing integer-quantum Hall pla-
teau transitions [45]).
To gain intuition for the underlying physics, we first

analyze the strongly anisotropic limit of the network model,
which consists of (narrow) infinite strips that alternate
between Pfaffian and anti-Pfaffian. A closely related model
was studied in [44], focusing on the composite Fermi
liquid, and in [31,46] to access the PH-Pfaffian phase in the
topological-insulator-surface and quantum-Hall contexts,
respectively. The low-energy properties of the model are
encoded in Lanis ¼ P

y½Ledge
y þ Ltunnel

y � with
Ledge
y ¼ γ⃗y · ½∂t − ð−1Þyv∂x�γ⃗i;y;

Ltunnel
y ¼ iγ⃗y½Munif þ ð−1ÞyMstag þMrand

y ðxÞ�γ⃗yþ1; ð3Þ
where γ⃗Ty ¼ ðγ1;y; γ2;y; γ3;y; γ4;yÞ and y enumerates Pfaffian–
anti-Pfaffian interfaces. Ltunnel

y is parametrized by three
4 × 4 matrices, describing uniform (Munif ), staggered
(Mstag), and random (Mrand) tunneling terms. The Oð4Þ
symmetry of the nonrandom network makes Munif propor-
tional to the unit matrix. When Mrand ¼ Mstag ¼ 0, Lanis

features a discrete translation symmetry and is readily
diagonalized in momentum space where one finds four
gapless Majorana cones.
Perturbing these cones with a generic mass matrix Mstag

opens an energy gap and the resulting phases can be

classified according to the number of negative masses.
A global anti-Pfaffian phase arises when all four cones are
gapped by tunneling across Pfaffian strips. We adopt the
convention that this corresponds to all Majorana masses
being negative. When Mstag is Oð4Þ symmetric, there is a
direct transition between Pfaffian and anti-Pfaffian.
Without this symmetry individual masses can flip sign,
each incrementing the total thermal Hall conductance by
Δκxy ¼ 1=2, thus realizing all phases in Table I.
We note that a clean uniform system differs from Lanis

without disorder. The transition between Pfaffian and anti-
Pfaffian is expected to be first order in the former, but
continuous in the latter. Consequently, intermediate phases
with κxy ¼ 2, 5=2, and 3 are more readily accessible in the
network model, by weakly perturbing the critical point. We
expect this distinction to become insignificant in the
presence of disorder where edge states between puddles
necessitate closure of the energy gap, and the uniform and
anisotropic models to exhibit the same universal behavior.
The key features of the anisotropic network model carry

over to the isotropic case. Being free-fermion systems
without charge conservation or any other symmetry, they
fall into class D in the Altland-Zirnbauer classification
[47,48]. In two dimensions, this class is characterized by a
Z topological invariant nM whose integer value corre-
sponds to a quantized thermal Hall effect with κxy ¼ nM=2
[49,50]. Certain extra symmetries, such as the Oð4Þ
symmetry in Eq. (3), can ensure transitions where κxy
jumps by 2. However, this changes when disorder respects
the protecting symmetry only on average. Random scatter-
ing completely mixes the four species of Majorana fer-
mions and at large enough length scales, the system is
effectively comprised of a single species of Majorana
fermions. Without fine-tuning, such a system exhibits
phase transitions across which the thermal Hall conduct-
ance changes by Δκxy ¼ 1=2 (and not by larger Δκxy),
leading to the proposed phase diagram shown in Fig. 1. The
behavior around each of the four lines emanating from the
transition point of the clean system was studied in [37–41].
We note that the disorder-induced localized phases in Fig. 1
are connectable to their clean analogs (113, PH-Pfaffian,
and K ¼ 8) without delocalization in the bulk. In contrast,
the bulk energy gap is not protected in the disordered
system and may close in this process, analogous to the case
of the integer quantum Hall effect.
The emergent splitting of symmetry-protected phase

transitions due to statistically symmetric disorder is familiar
from other contexts. One example is the integer quantum
Hall plateau transition between ν ¼ 0 and ν ¼ 2 of spin-
degenerate electrons with spin-orbit scattering [51]. The
introduction of spin-orbit scattering splits the single tran-
sition across which the Hall conductance changes by
Δσxy ¼ 2ðe2=hÞ into two transitions, each with Δσxy ¼
ðe2=hÞ. A second example is that of valley degenerate

(a) (b)

FIG. 3. Microscopic puddles and schematic network model.
(a) Puddles of anti-Pfaffian (of size ∼ξ) embedded in a Pfaffian
phase. Each Pfaffian–anti-Pfaffian boundary hosts four copro-
pagating Majorana fermions. (b) Adding a topologically trivial
pair of counterpropagating Majorana modes next to the sample
boundary, followed by suitable hybridization of counterpropa-
gating modes results in the PH-Pfaffian edge on top of a Chalker-
Coddington model containing four Majorana fermions.
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electrons in graphene, where random intervalley scattering
splits the transition in a similar fashion [52].
In addition to the localized phases with quantized κxy, a

thermal metal phase with nonquantized κxy can also arise
[37–41]. There are thus two scenarios for a disordered
system to transition between κxy ¼ 7=2 (Pfaffian) and
κxy ¼ 3=2 (anti-Pfaffian): (i) The Majorana fermions in
the bulk remain localized apart from sharp transitions with
Δκxy ¼ 1=2 each, or (ii) there is an intermediate delocal-
ized phase and κxy varies continuously. Which case is
realized depends on the type and strength of randomness,
with an important role being played by vortex disorder.
Ascertaining the fate of a particular system requires a
detailed microscopic analysis that we do not attempt here.
The experimental observation of a quantized thermal Hall
conductance supports the first scenario over the second
although it does not exclude the possibility of a metallic
bulk with longitudinal thermal conductance κxx ≪ κxy.
To corroborate our scenario, we numerically studied

disorder-induced splitting of transitions between different
topological phases in two superconducting model systems:
a one-dimensional superconductor in class BDI and a two-
dimensional superconductor in class D [49,50]. In the one-
dimensional case, we studied four identical Kitaev-chains
undergoing phase transitions between having and not
having Majorana zero modes at their ends. The Oð4Þ
symmetry inherent in this model ensures that there is a
single transition, where the topological invariant changes
by four. Upon introducing disorder that preserves thisOð4Þ
symmetry only on average, we observe numerically that the
transition splits into a sequence of four transitions (see
also [53,54]).
A two-dimensional system where symmetry ensures a

fourfold transition is a bilayer px þ ipy superconductor
transitioning into a px−ipy bilayer. This transition involves
ΔnM¼2 in each layer, so that in total ΔnM ¼ 4. The
transition is protected by layer-interchange and spatial
rotation symmetries. Again, we introduce statistically
symmetric disorder and numerically observe splitting of
the transition into a sequence of four transitions with
ΔnM ¼ 1 (see Supplemental Material [55] for details).
We note that our model is based on a fully coherent

network. An incoherent mixture of puddles with two
different values of the electrical Hall conductances exhibits
the so-called semicircle law [57], which states that for
approximately equal population of the phases, there is a
large longitudinal conductance of the order of the differ-
ence between the two Hall conductances. We expect an
analogous analysis for thermal transport in an incoherent
mixture to lead to a similar law. This result is inconsistent
with the observed plateau with κxy ¼ 5=2. Yet, it is possible
that it would describe samples of sizes larger than the
coherence length.
We conclude our analysis of the network model by

returning to the question of edge mode equilibration.

Above, we always assumed that all edge modes are fully
equilibrated at the length scale ξ. When ξ < leq., the same
model can still be used provided that puddles are inter-
preted as more coarse-grained objects: at a scale larger than
leq. and ξ, one may define the state of a “puddle” of this
size to be whichever state is present in the majority.
Transmutation from Abelian to non-Abelian statistics.—

A somewhat surprising outcome of our analysis is that
puddles of two non-Abelian phases may form a macro-
scopic Abelian phase, and vice versa. On short length
scales the quasiparticles reflect the state of the microscopic
puddle where they reside. However, the topological proper-
ties of the macroscopic state can be inferred only from
quasiparticles whose separation significantly exceeds both
the puddle size and the localization length. Macroscopic
degeneracy and non-Abelian braiding exist when each bulk
quasiparticle carries a localized zero energy Majorana
mode. In all the phases considered here, quasiparticles
may be viewed as vortices in class-D superconductors, each
harboring nM mod 2 Majorana zero modes in their cores.
The microscopic value of this number (determined by the
puddle hosting the vortex) need not match the one of the
macroscopic state. In that case, the difference must be made
up by the effect of the vortex on the network of coupled
Majorana modes.
We illustrate the mechanism behind this in Fig. 4, starting

with puddles of two Abelian phases that form a macroscopic
non-Abelian phase. Here, an e=4 excitation changes the
boundary conditions of the edge states to create a pair of
Majorana zero modes at the puddle boundary [cf. Fig. 4(a)].
This pair of zero modes is not protected and could thus
hybridize and gap out. However, when the microscopic
puddles of the two Abelian phases generate a macroscopic
non-Abelian phase, one of the zero modes transfers to the
sample boundary, leaving behind a single stable Majorana
zeromodebound to thee=4 excitation [cf. Figs. 4(b) and4(c)].
The complementary case of an Abelian phase arising from
puddles of two non-Abelian phases can be understood
analogously; see [55] for further details.

(a) (b) (c)

FIG. 4. Emergence of non-Abelian quasiparticles from puddles
of Abelian phases. (a) In the Abelian “host” system, a fractional
charge e=4 is associated with a pair of Majorana zero modes,
which can hybridize with one another. (b) At the transition into
the non-Abelian phase, only one of the two Majorana fermions
(along with its zero mode) delocalizes throughout the system.
(c) In the non-Abelian phase, the previously percolating Major-
ana fermion forms an edge state at the outer sample boundary,
while still carrying the exact zero-energy mode.
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Conclusions and outlook.—We developed a model for a
disordered system at ν ≈ 5

2
built from mesoscopic puddles

of Pfaffian and anti-Pfaffian. We showed, using both
numerical and analytical arguments, that a plateau with
κxy ¼ 5=2 is stabilized at sufficiently long distances. Our
theory predicts that for moderate disorder a series of phase
transitions between κxy values of 7=2 → 3 → 5=2 → 2 →
3=2 occurs with increasing filling factor ν. The properties of
the quasiparticles at large distances, in particular their
Abelian or non-Abelian statistics, are determined by the
macroscopic phase, and not by the microscopic puddle in
which they reside.
Experimental realization of the full series of transitions

in κxy depends on the width of the σxy ¼ 5
2
ðe2=hÞ plateau,

which is usually rather narrow. The widths of that plateau
and of each of the phases in Fig. 1 increase with disorder
(at least for weak disorder), but the scaling of their relative
sizes is unknown to us. However, for a mesoscopic system,
there may be an alternative route towards observing differ-
ent quantization of the thermal Hall conductance. The
splitting of plateaus only occurs beyond a crossover length
scale, and smaller systems exhibit instead the thermal Hall
conductance of Pfaffian or anti-Pfaffian. (A trivial example
of this is a system containing only a single puddle.) A
systematic study of the thermal Hall conductance as a
function of sample size could thus be used to test our
theory, as well as determine the crossover length scale.
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