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We have observed the unconventional photon blockade effect for microwave photons using two coupled
superconducting resonators. As opposed to the conventional blockade, only weakly nonlinear resonators
are required. The blockade is revealed through measurements of the second order correlation function
gð2ÞðtÞ of the microwave field inside one of the two resonators. The lowest measured value of gð2Þð0Þ is
0.4 for a resonator population of approximately 10−2 photons. The time evolution of gð2ÞðtÞ exhibits an
oscillatory behavior, which is characteristic of the unconventional photon blockade.
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Photon blockade is observed when a single two-level
emitter, such as an atom [1], a quantum dot [2], or a
superconducting qubit [3,4] is strongly coupled to a cavity,
thus limiting the occupation of the cavity mode to zero or
one photon. The second order correlation function gð2ÞðtÞ of
the light leaking out of the cavity shows a dip at short time
with gð2Þð0Þ < 1, a signature of nonclassical fluctuations
corresponding to antibunched photons. The same effect is
predicted for a nonlinear Kerr cavity when the Kerr
nonlinearity U is much larger than the cavity linewidth κ
[5]. In 2010, Liew and Savona discovered that this
constraint can be relaxed by considering two coupled
cavities instead of one [6]. They found that perfect block-
ade gð2Þð0Þ ¼ 0 can be achieved even for a vanishingly
small ratio U=κ and named the effect “unconventional
photon blockade” (UPB). The UPB was later interpreted as
an interference between the two possible paths from the one
to the two photon state [7] or as the fact that the cavity state
is a displaced squeezed state [8]. Such states are known
to exhibit antibunching for well-chosen displacement and
squeezing parameters [9–12]. Reaching the strong coupling
regime between a cavity and an emitter, or a large U=κ in a
Kerr cavity remains highly challenging, especially in the
optical domain. Therefore, the UPB has attracted consid-
erable attention [13] by opening new possibilities to obtain
sources of nonclassical light using readily available non-
linear cavities forming a photonic molecule [14,15].
Here, we report on the observation of the UPB for

microwave photons in a superconducting circuit consisting
of two coupled resonators, one being linear and one weakly
nonlinear [16]. We measure the moments of the two
quadratures of the field inside the linear resonator using
a linear amplifier [17,18]. The determination of gð2Þð0Þ for
an arbitrary field requires measuring the moments of the
two quadratures up to the fourth order. But in the case of the
UPB, the state of the field is expected to be a displaced
squeezed Gaussian state; therefore the value of gð2Þð0Þ can

be accurately obtained from the measurement of the first
and second order moments only. This greatly reduces the
experimental acquisition time and allows us to perform
an exhaustive study of the blockade phenomenon as a
function of various experimental parameters. In particular,
we have searched for the optimal gð2Þð0Þ as a function of the
resonator population. We also measure gð2ÞðtÞ and observe
oscillations that are characteristic of the UPB. Finally, we
confirm the validity of the Gaussian assumption through
measurements of the moments up to the fourth order.
Figure 1(a) shows a microscope image of the sample.

Two resonators made of niobium and consisting of an
inductance in series with a capacitance are coupled through
a capacitance. The inductive part of the bottom resonator
includes a SQUID that introduces a Kerr nonlinearity. Both
resonators are coupled to two coplanar waveguides (CPW)
that allow us to pump and probe the resonator fields. The
effective Hamiltonian of the circuit is

H=ℏ¼ωaa†aþωbb†bþJða†bþb†aÞ−Ub†b†bb; ð1Þ
where ωa is the resonance frequency of the top resonator,
ωb is the resonance of the bottom resonator, which depends
on the SQUID flux, J the coupling, and U the Kerr
nonlinearity. As shown in Ref. [7], this Hamiltonian leads
to a perfect blockade under the condition ωa ¼ ωb and
U ¼ 2κ3=ð3 ffiffiffi

3
p

J2Þ, where κ is the loss rate of the reso-
nators. The sample was designed to fulfill this condition
with J ¼ 2π × 25, κ ¼ 2π × 8, and U ¼ 2π × 0.3 MHz.
To check these values for our sample, we first measure

the evolution of ωb with the SQUID flux as shown in
Fig. 1(b). We assume that the bottom resonator can be
modeled by a lumped element circuit formed by the
association in series of a capacitor C, an inductance L,
and the SQUID inductance Ls, which varies with the
applied flux ϕ as Ls ¼ Ls0=j cosðπϕ=ϕ0Þj. From the red
fit, we obtain L ¼ 1.09 nH and Ls0 ¼ 81 pH. When
ωb ≈ ωa ¼ 2π × 5.878 GHz, we obtain Ls ¼ 337 pH,
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from which we deduce the Kerr nonlinearity U ¼
πp3=ð2RKCÞ ¼ 2π × 0.25 MHz, where RK ¼ h=e2 ≈
25.8 kΩ and p ¼ Ls=ðLþ LsÞ [19]. Figure 1(c) shows a
measurement of the top resonator transmission when
ωb crosses ωa. By fitting the observed avoided level
crossing, we obtain J ¼ 2π × 25.1 MHz. Finally, we have
measured the linewidths (fwhm) of each resonator and
obtained κa ¼ 2π × 10.35 MHz for the top resonator and
κb ¼ 2π × 7 MHz for the bottom resonator.
In order to measure the UPB, we make the assumption

that the state in the resonator is Gaussian. This assumption
is well verified in numerical simulations of the master
equation describing our system [20] in accordance with the
predictions of Ref. [8]. Therefore, the quantum state of
the resonator field a is characterized by the displacement
α ¼ hai and by the Gaussian noise ellipse around the
mean displacement. Defining the operator d ¼ a − α, the

fluctuations of d are Gaussian and are the one of a squeezed
thermal state, which can be parametrized by the real
number n ¼ hd†di and the complex number s ¼ hddi. In
the case of our experiment, because s remains small, n is
the population of the thermal state. With these definitions,
the second order correlation function at zero time is

gð2Þð0Þ ¼ 1þ 2jαj2ðnþ jsj cosφÞ þ jsj2 þ n2

ðjαj2 þ nÞ2 ; ð2Þ

where φ is the complex argument of s=α2 [9]. This formula
shows that a finite amount of squeezing is necessary to have
gð2Þð0Þ < 1. In the limit of a squeezed state with minimal
uncertainty n ¼ 0 and supposing jsj ¼ jαj2, one obtains
gð2Þð0Þ ¼ 2þ 2 cosφ showing that gð2Þð0Þ oscillates with
φ between 0 and 4. Perfect antibunching is obtainedwhen the
state simultaneously fulfills the two conditions jsj ¼ jαj2 and
cosφ ¼ −1. Experimentally, one has to tune the pump and
the nonlinear resonator frequencies to meet these conditions.
The measurement of α, n, and s is performed by

amplifying the field leaving the top resonator with a
cryogenic amplifier and by measuring the two quadratures
of the amplified field as shown in Fig. 1(d). We suppose
that the field at the input of the IQ mixer is proportional to
aþ h†, where h is a Gaussian field whose fluctuations are
dominated by the intrinsic noise of the amplifier [17,18].
At the output of the mixer, we separate the ac and the dc
components of each quadrature. The dc components X̄, Ȳ
measure α while the ac components X, Y are the quad-
ratures of the field dþ h† at the pumping frequency. As
shown in Ref. [8], the noise spectrum of d consists of two
peaks centered approximately at �J with a linewidth κ. We
therefore filter the ac components with a bandpass filter of
bandwidth Δf ¼ 24 MHz centered at 22.5 MHz.
The population of h is nh ¼ 2kBTamplΔf=ðGattγ2Þ,

where Tampl ¼ 2 K is the amplifier noise temperature,
Gatt ¼ −3 dB is the attenuation between the sample and
the amplifier, and γ2 ¼ 2π × 8.6 MHz is the simulated loss
rate from the mode a to the measurement port [20]. These
values lead to nh ¼ 12.5, which must be compared to the
expected values jsj ≈ 10−2 and n ≈ 10−3. In order to extract
this small signal, we alternately acquire data turning the
pump on and off and repeat this cycle many times. The
period of the cycle is kept below 1 s to avoid any influence
of a drift of the amplifier noise or gain. The expression of α,
n, and s as a function of the measured moments are

α ¼ hX̄i1 þ ihȲi1
ffiffiffi

2
p ; ð3aÞ

n ¼ hX2i1 − hX2i0 þ hY2i1 − hY2i0
2

þ nth; ð3bÞ

s ¼ hX2i1 − hX2i0 − hY2i1 þ hY2i0
2

þ ihXYi1; ð3cÞ

FIG. 1. (a) Microscope image of the two coupled Nb resonators
used to observe theUPB.The bottom resonator is frequency tunable
and slightly nonlinear due to the presence of a SQUID in the
inductive arm. The SQUID consists of twoAl=AlOx=Al Josephson
junctions with a surface of 1 μm2 each. The blockade occurs in the
top resonator, which is linear. The interdigited capacitance in the
center couples the two resonators. The numbers label the ports
connected to the sample. b) Evolution of the resonance frequency
ωb as a function of the SQUID flux. c) Evolution of jS12j2 as a
function of frequency and SQUID flux. d)Microwave setup used to
measure the UPB. Ports 3 and 4 are terminated by 50 Ω loads
anchored at 10 mK. The LO signal is attenuated and pumps the
system through the port 1. The signal of interest exits through port 2
and goes through two circulators and a diplexer before reaching the
amplifier. After further amplification outside the cryostat, the signal
ismixedwith theLOand the resultingdc and ac components of each
quadrature are filtered and digitized.
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where h·i1 (h·i0) corresponds to averaged data when the
pump is on (off). The data are rescaled to correct for the
imperfections of the IQ mixer such that hX2i0 ¼ hY2i0 ¼ nh
and hXYi0 ¼ 0 [20]. By construction, the measurement of n
is only sensitive to a relative change of the fluctuations of the
resonator field. We therefore have to make an assumption for
the occupation of the measured mode when the pump is off.
We suppose that the population is thermal with a mean
occupation nth that we calculate by estimating the incident
thermal radiation on both resonators and solving the master
equation [20]. We obtain nth ¼ 7.8 × 10−4, which corre-
sponds to a temperature of 39.4 mK.
Figure 2 shows the results of the measurement of the

Gaussian parameters α, n, and s when ωa ≈ ωb as a
function of the detuning δa ¼ ωp − ωa, where ωp is the
pump frequency. The amplitude of the field jαj2 passes by a
minimum when the detuning increases. Around this mini-
mum, jαj2 is on the order of jsj and gð2Þð0Þ deviates
significantly from one. The angle φ determines the sign
of the deviation and its evolution explains the oscillation of
gð2Þð0Þ around the resonance. The amount of squeezing is
small and the Wigner distribution of the state is almost an

isotropic Gaussian function. But because the displacement
is also small, the squeezing is sufficient to make the overlap
between the Wigner distribution of the state and the one of
the two-photon Fock state smaller than for a coherent state.
This happens when the small axis of the squeezing ellipse is
aligned with the direction of the displacement α in the XY
plane, resulting in gð2Þð0Þ < 1. Simulations of the master
equation using the measured values forU, J, κa, and κb well
reproduce the observed evolution. The only adjustable
parameter in the simulation is the pump intensity that
we adjust to reproduce the observed displacement jαj2.
The Gaussian assumption can be extended to the

measurement of gð2ÞðτÞ by introducing the time-dependent
quantities nðτÞ and sðτÞ. They are defined from the
measured time-dependent correlation as in Eq. (3)
with the transformation hX2i → hXðtÞXðtþ τÞi, hY2i →
hYðtÞYðtþ τÞi, and hXYi → hXðtÞYðtþ τÞi. The results
are plotted in Fig. 3 for four different pump frequencies.
Because the squeezing results from the interference
between the two components of the noise spectrum at
þJ and −J, the angle φ oscillates in time with a period
2π=J ¼ 40 ns resulting in an oscillation of gð2ÞðτÞ that is
characteristic of the UPB [6].
An important figure of merit for a single photon source is

the evolution of gð2Þð0Þ as a function of the source bright-
ness, which is equal to γ2ntot, where ntot ¼ jαj2 þ n is the
resonator population. In order to minimize gð2Þð0Þ for a
given population, the pump strength, the pump frequency,
and the resonator detuning must be optimized.
Experimentally, we fix the pump strength and measure
gð2Þð0Þ and ntot varying both ωp and ωb as shown in
Fig. 4(a) for one pump strength. By plotting the same data

FIG. 2. Evolution of gð2Þð0Þ with the pump detuning. The two
uppermost plots show the evolution of the gaussian parameters
characterizing the gaussian state (see text) in the resonator as a
function of δa. Markers correspond to experimental data points
and solid lines to the solution of the master equation [20]. From
these quantities, we compute gð2Þð0Þ using Eq. (2). The error bars
correspond to statistical 1σ errors. The non-linear resonator is
tuned to ωb ≈ ωa within a few MHz and the incident pump power
on the sample is −107 dBm.

FIG. 3. Measured time evolution of gð2ÞðτÞ for four different
pump detunings. Solid lines interpolate the experimental data
points. The bottom resonator is tuned to ωb ≈ ωa and the incident
pump power is -101 dBm. Each curve corresponds to a different
detuning δa. The inset shows the evolution of gð2Þð0Þ as a function
of δa, the four detunings corresponding to the curves in the main
plot are identified by colored points. The oscillation of gð2ÞðτÞ
with time is characteristic of the UPB. Depending on the initial
phase of the oscillation, the state violates none, one or two of the
inequalities gð2Þð0Þ ≥ 1, gð2Þð0Þ ≥ gð2ÞðτÞ that can be derived for a
classical field.
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points as a function of ntot, we obtain a cloud of points
whose lower envelope gives the minimal gð2Þð0Þ as a
function of ntot for our system [see Fig. 4(b)]. The solid
line shows the predicted minimum. Its value decreases with
ntot and reaches a minimum when ntot becomes of the order
of nth and then increases again when the thermal population
dominates.
In Fig. 4(b), we also show points with error bars that are

obtained by averaging over a large number of measure-
ments close to the minimum of gð2Þð0Þ at a given pump
power in order to obtain a better estimate of its value. We
obtain 0.38� 0.08, 0.33� 0.13, and 0.43� 0.05, respec-
tively, for the magenta, red, and green points. For these
points, we now estimate the effect of a miscalibration in nh
and nth on the value of gð2Þð0Þ. Assuming an error of a
factor two for both quantities, gð2Þð0Þ varies between 0.18
and 0.76 for the magenta point, 0.17 and 0.63 for the red
point, and between 0.39 and 0.49 for the green point. The
magenta point is very sensitive to a change in nth because a
large fraction of the resonator population is thermal. With
increasing ntot and smaller thermal fraction, the systematic
error decreases.
Finally, we have checked the validity of the Gaussian

assumption by measuring for a few points the moments of
X and Y up to the fourth order. We then compute gð20Þð0Þ ¼
ha†a†aai=ha†ai2 and compare it to the value of gð2Þð0Þ
deduced from Eq. (2) as shown in Fig. 4(c). Given the
statistical error bars, the ratio gð20Þð0Þ=gð2Þð0Þ is consistent
with one in the considered range of ntot. Simulations
confirm that the Gaussian hypothesis is more and more
valid with decreasing ntot and we therefore expect the

Gaussian assumption to be valid in the full range used in the
experiment [20].
In conclusion, we have observed the main features of

the UPB using two coupled superconducting resonators.
We found a minimal value of gð2Þð0Þ ≈ 0.4, which is
limited by the thermal population in the cavity. An
intriguing question is the extension of the UPB to a large
number of coupled weakly nonlinear resonators and its
role in the dynamics of coherently pumped lattices of
superconducting resonators [21].
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Note added in proof.—Recently, we have become aware of
a similar work in the optical domain [22].
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