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We investigate the minimal Hilbert-space dimension for a system to be synchronized. We first show that
qubits cannot be synchronized due to the lack of a limit cycle. Moving to larger spin values, we demonstrate
that a single spin 1 can be phase locked to a weak external signal of similar frequency and exhibits all the
standard features of the theory of synchronization. Our findings rely on the Husimi Q representation based
on spin coherent states which we propose as a tool to obtain a phase portrait.
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Introduction.—The universal concept of synchronization
applies to an impressively large variety of apparently
unrelated systems. This ranges from the pendulum clocks
of Huygens to heart beats, including light pulses emitted by
fireflies as well as an applauding crowd [1]. The hallmark
of this phenomena is the possibility to adjust the phase of a
self-sustained oscillator by perturbing it with an external
periodic signal [2], or coupling it to one or more self-
sustained oscillators of similar frequencies [3]. They key
component for this is the absence of a preferred phase of the
oscillator, which can thus be locked while the limit cycle
remains essentially intact.
The Van der Pol model [1,4], one of the workhorses for

theoretical studies of this effect, has recently been formu-
lated in the quantum framework, providing an excellent
platform for studying the impact of quantum effects onto
synchronization [5,6]. Building on the rapid experimental
progress [7–10], an exciting direction is to study how
synchronization emerges in a large network of such quantum
oscillators [11], similar in spirit to the classical model
proposed by Kuramoto [12]. However, when moving from
a classical to a quantum framework, one is inevitably
confronted with the exponential growth of the Hilbert space
as opposed to the linear classical scaling, which limits the
tractable size of an arbitrary network of quantum oscillators.
In this Letter, we approach this issue by addressing the

fundamental question of the minimal elementary unit
which can be synchronized, using the Hilbert-space dimen-
sion as a natural measure of size. While at first sight qubits
and their associated Bloch representation appear to be the
ideal candidate for the smallest possible system [13–16],
we show that they lack a valid limit cycle and therefore do
not fit into the standard paradigm of synchronization [1].
However, we find that the formalism of synchronization
can be applied to the next smallest system: a single spin 1.
To obtain a phase portrait applicable to spins in which we
can identify the phase variable that lies at the core of the
synchronization formalism, we choose spin coherent states,
which undergo an oscillation similar to the closed curve

followed by the coherent states of a harmonic oscillator
in position-momentum space [17,18]. In particular, we
demonstrate how the spin formulation of the Husimi Q
representation can be used to visualize the limit cycle and
provide signatures of synchronization.
Qubit.—A natural attempt to find the smallest possible

system to synchronize is to consider a single qubit. It
comes equipped with a standard representation of the two-
dimensional Hilbert space Hqubit known as the Bloch
sphere. Any unitary applied to a qubit can be visualized
as a rotation of some angle about some direction. As a
consequence, for a generic Hamiltonian pointing in the
direction Ĥqubit ∝ n⃗ · ˆσ⃗, where the vector of Pauli matrices

is ˆσ⃗ ¼ ðσ̂x; σ̂y; σ̂zÞ, any state different from the eigenstates
j � n⃗i will rotate linearly in time about the direction set by
the unit vector n⃗. This geometrical picture provides the
necessary phase variable for addressing the question of
synchronization, with the aim being to lock this oscillation
in the Bloch sphere to an external signal.
To make contact with the standard paradigm of synchro-

nization, we first need to establish a valid limit cycle for the
self-sustained oscillator. Specifically, adding loss and gain
to the dynamics of the qubit, we look for a fixed point of the
dissipative map that does not possess any phase preference.
That the phase of the limit cycle needs to be free is a
sine qua non condition that ensures that any perturbation
neither grows nor decays, which is the essence of synchro-
nization [1].
In the case of a qubit, any state belonging to the space

Hqubit can be written as ρ̂qubit ¼ ð1̂þ m⃗ · ˆσ⃗Þ=2, where
jm⃗j ≤ 1 is maximized for pure states that lie on the surface
of the Bloch sphere. This implies that the set of states
invariant under rotations with respect to the axis n⃗ satisfy
m⃗ ¼ λn⃗ with −1 ≤ λ ≤ 1. In other words, they correspond
to probabilistic mixtures of the eigenstates j � n⃗i, which
are lying exactly on the rotation axis where the phase
variable is not defined. Any attempt with qubits is thus
bound to fail due to the absence of a phase-symmetric state
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that is different from the extremal eigenstates. When put
into the context of a Van der Pol oscillator, this would mean
being only able to stabilize the vacuum state, which
remains at the center of the phase space and does not
provide a valid limit cycle for synchronization. Indeed, the
vacuum state is lacking self-sustained oscillations, which
correspond to a stable closed curve in phase space with an
associated phase variable.
Spin S > 1=2.—We now turn our attention to higher-spin

systems. Since the large-spin limit can be mapped to a
harmonic oscillator [19], it is interesting to ask what is the
minimal value of S required to observe the onset of
synchronization. To investigate this case, we first need
to propose an extension of the Bloch sphere representation
to spins S ≥ 1=2. The well-known harmonic-oscillator
coherent states can be extended to spin systems and are
obtained by rotating the extremal state [17,18],

jθ;ϕi ¼ expð−iϕŜzÞ expð−iθŜyÞjS; Si; ð1Þ

where the spin operators are generators of the rotation
group SO(3) satisfying ½Ŝj; Ŝk� ¼ iϵjklŜl. Note that this
parametrization in terms of a pair of Euler angles θ and ϕ
corresponds, in the case of a qubit, to the Bloch sphere
representation. Moreover, we can easily show that the time
evolution of spin coherent states under the free Hamiltonian

Ĥ0 ¼ ℏω0Ŝz ð2Þ

is given by e−iĤ0t=ℏjθ;ϕi ¼ jθ;ϕþ ω0ti, which corre-
sponds to an oscillation with frequency ω0 as desired.
We thus have a family of states resembling a classical
spin in a unit sphere pointing in the direction

hθ;ϕj ˆS⃗jθ;ϕi ¼ n⃗θ;ϕ, where n⃗θ;ϕ ¼ ðcosϕ sin θ; sinϕ sin θ;
cos θÞ, and precessing about the z axis. This analogy can
be made more rigorous by noting that these states form
an overcomplete basis of the Hilbert space. Specifically,
neighboring directions have an overlap given by
jhθ0;ϕ0jθ;ϕij2 ¼ ½ð1þ n⃗θ;ϕ · n⃗θ0;ϕ0 Þ=2�2S, which vanishes
in the limit of a classical spin S → ∞, and the completeness
relation reads

Z
π

0

dθ sin θ
Z

2π

0

dϕjθ;ϕihθ;ϕj ¼ 4π

2Sþ 1
1̂: ð3Þ

This motivates us to introduce the spin equivalent of the
Husimi Q representation for discussing synchronization in
spin systems, which is defined for any state ρ̂ as [20]

Qðθ;ϕÞ ¼ 2Sþ 1

4π
hθ;ϕjρ̂jθ;ϕi: ð4Þ

While it is normalized, this function should not be
understood as a probability distribution, since the three

components of the spin operator ˆS⃗ do not commute. Similar
to other quasiprobability distributions such as the Wigner
function, it is employed to provide a phase portrait, which
in this case allows us to visualize any spin state in terms
of the most “classical” states [21]. Moreover, it is easily
computed with the use of the Wigner D matrix
DS

m0;mðϕ; θ; 0Þ ¼ hS;m0je−iϕŜze−iθŜy jS;mi, which provides
a representation of rotation operators in terms of the spin
eigenbasis.
Limit cycle.—We will now apply this tool to study

synchronization in the context of a single spin 1. The
key difference with the qubit case is the existence of an
additional phase-symmetric state j1; 0i that is not just a
combination of the extremal eigenstates j1;�1i. Its Husimi
Q representation Qðθ;ϕÞ ¼ 3 sin2ðθÞ=8π is shown in
Fig. 1(a) using the Winkel tripel projection of a sphere
[22]. It is independent of ϕ and centered around θ ¼ π=2,
corresponding to coherent states on the equator precessing
about the z axis. The most straightforward approach to
stabilize this target state is via the following master
equation (in a frame rotating with Ĥ0) illustrated in
Fig. 1(b),

_̂ρ ¼ γg
2
D½ŜþŜz�ρ̂þ

γd
2
D½Ŝ−Ŝz�ρ̂; ð5Þ

where γg and γd are the respective gain and damping rates,

and D½Ô�ρ̂ ¼ Ô ρ̂ Ô† − 1
2
fÔ†Ô; ρ̂g is the Lindblad super-

operator [23]. The dynamics generated by this dissipative
map is not only attracting any state towards the equator,
thereby stabilizing the energy, but does so without any
phase preference. This is a consequence of the master
equation being invariant under rotations about the z axis.
We have thus established a valid limit cycle, which we may
now attempt to synchronize.

(a) (b)

FIG. 1. The limit cycle. (a) The Q function of the target state
j1; 0i represented using the Winkel tripel earth projection. The
north and south poles correspond respectively to θ ¼ 0 and θ ¼ π
while ϕ specifies the longitude. The ϕ-symmetric distribution
centered around the equator is reminiscent of the ring stabilized in
the Wigner representation of a Van der Pol limit cycle [6]. (b) The
spin-1 ladder, with the eigenstates separated by the natural
frequency ω0. The action of the dissipators is to transfer the
populations from the extremal states towards the target state.
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Synchronization.—We model the external signal by a
semiclassical drive of strength ε at frequency ω, described
by the Hamiltonian in the rotating-wave approximation

Ĥsignal ¼ iℏ
ε

2
ðeiωtŜ− − e−iωtŜþÞ: ð6Þ

Moving to a frame rotating with the drive frequency, the
system is thus described by the master equation

_̂ρ ¼ −i½ΔŜz þ εŜy; ρ̂� þ
γg
2
D½ŜþŜz�ρ̂þ

γd
2
D½Ŝ−Ŝz�ρ̂; ð7Þ

where Δ ¼ ω0 − ω is the detuning between the frequency
of the autonomous oscillator and the drive. The steady state
can be obtained analytically, yet its expression is rather
uninformative as such. Instead, Fig. 2 illustrates the power
of the Q function to provide signatures of synchronization.
In particular, focusing first on the resonant scenario we find
that phase locking is achieved with equal or opposite
phases when one of the rates dominates. This is one of
the main results of our Letter. The π phase difference
between these two situations can be physically understood
by noting that they are equivalent under time reversal with
the relabelling j1; 1i ↔ j1;−1i. Intriguingly, the transition
regime where the rates are comparable shows no visible
locking.
To better understand these different synchronization

regimes, we define the following synchronization measure,

SðϕÞ ¼
Z

π

0

dθ sin θQðθ;ϕÞ − 1

2π
; ð8Þ

which vanishes everywhere in the absence of synchroniza-
tion. On the other hand, any nonuniform distribution of the
phase will lead to a positive maximum of this measure,
indicating a locking to the corresponding phase [24,25]. We
now take advantage of the small dimension of the Hilbert
space and derive analytically the time evolution of this
measure using the master equation (7). Synchronization

effects being of first order in the perturbation [1], we
perform a first-order expansion in the signal strength,
yielding

_SðϕÞ ¼ 3ε

16
ðe−γgt=2 − e−γdt=2Þ cosðϕ − ΔtÞ þO

��
ϵ

γmin

�
2
�
;

ð9Þ

where γmin ¼ minðγg; γdÞ. This expression allows us to
compute the phase distribution at any time given the initial
condition SðϕÞ ¼ 0 ∀ ϕ, corresponding to the phase-
symmetric limit cycle (see Fig. 1).
The first observation is that indeed, no synchronization

is expected in the balanced case γg¼γd where _SðϕÞ→
Oð½ðϵ=γminÞ�2Þ. The weak signal is not able to adjust the
phase, and increasing the power further will start to deform
the limit cycle, thereby leaving the paradigm of synchro-
nization. When one of the rates dominates, say γd (γg), the
exponential prefactor contributes positively (negatively)
over a timescale of order γ−1g (γ−1d ). The dynamics is then
that of synchronization to a phase reference that is linearly
varying in time for nonzero detuning. When jΔj ≪ γmin,
this phase reference is effectively constant and leads to
significant in-phase (antiphase) locking. This is the sit-
uation illustrated in Fig. 2, for which the steady-state
distribution is given from Eq. (9) by SðϕÞ ≈ ð3ε=8Þ×
ð1=γg − 1=γdÞ cosðϕÞ. As the detuning is increased, the
spin stays phase locked to the shifted phase reference up to
a regime jΔj ≫ γmin where it cannot follow its fast rotation.
The effect of synchronization is then averaged out,
cosðϕ − ΔtÞ → 0, as the signal is too off resonant to adjust
the phase.
This behavior is illustrated in Fig. 3(a), where we show

how the distribution SðϕÞ is dragged along as the reference
phase is rotated by the detuning Δ. Note that the amplitude
of the peak is also decreasing, as expected for a fixed signal
strength ε. To further characterize this dependence, we now
fix the detuning in Fig. 3(b), and find that SðϕÞ tends to be

(a) (b) (c)

FIG. 2. Phase locking to a resonant (Δ ¼ 0) external signal represented by the steady-stateQ function. The signal strength is chosen as
ε ¼ 0.1γmin, where γmin ¼ minðγg; γdÞ, ensuring that we are in the weakly perturbed regime. (a) γg=γd ¼ 0.1, γg ¼ 10ϵ, the distribution
is localized around ϕ ¼ 0 while remaining approximately on the equator. (b) γg=γd ¼ 1, γg ¼ 10ϵ, the limit cycle is slightly distorted
with no visible signature of phase locking. (c) γg=γd ¼ 10, γd ¼ 10ϵ, same as (a) but the distribution is now localized around ϕ ¼ π.
Thus, phase locking is possible when one of the rates dominates.
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more and more localized as we increase the signal strength.
This is characteristic of synchronization in the presence of
noise, where a stronger signal is able to reduce the tendency
of phase slips induced by the fluctuations of the phase. This
can be seen in Eq. (9), which predicts that the synchro-
nization dynamics is characterized by a rate of order ε. As
the signal strength approaches γmin, we thus expect the
phase locking to be more and more pronounced. These
features can be nicely summarized by the classic Arnold
tongue, shown in Fig. 3(c).
Figures 3(b) and 3(c) appear to indicate that increasing

the signal strength ε can only improve the resulting phase
locking. Yet, we expect a breakdown of this scaling from
the standard theory of synchronization [1]: on increasing
the signal beyond the weakly perturbed regime, the energy
of the self-oscillator starts to be affected and the stability of
the limit cycle is compromised. This is shown for Δ ¼ 0 in
Fig. 4, where we find that as the strength enters the gray
region ε > 0.1γmin, the energy of the spin is not stabilized
anymore and the Q function starts to move away from the
equator, i.e., from its natural limit cycle.

Discussion.—The framework developed here provides a
natural platform to explore how synchronization scales with
the dimension of the Hilbert space. In particular, one may
conjecture an improvement of the phase locking as the spin
approaches the classical limit and becomes less susceptible
to quantum noise. To investigate this direction, we apply the
master equation (7) to the case of a spin 2. We find that the
spin synchronizes but with a weaker phase locking:
max SðϕÞ ¼ Sð0Þ ≈ 0.001 at resonance for ε ¼ 0.1γg and
γg ¼ 0.1γd. This is to be compared with the value obtained
for a spin 1 with the same parameters: max SðϕÞ ¼ Sð0Þ≈
0.032. This result highlights a key open question in the field
of quantum synchronization: given a target limit cycle, what
is the optimal dissipative map that will yield the strongest
phase locking once a signal is applied? For a generic spin
number, the dynamics described by Eq. (5) is just one out of
the many possibilities for stabilizing the limit cycle to the
equator. For instance, an alternative choice in the high-spin
limit would be to reproduce the Van der Pol structure of a
linear gain and nonlinear damping.
An advantage of the spin unit introduced here is that it

can be implemented in a wide variety of physical systems.
Specifically, any effective spin-1 ladder provides a suitable
basis, such as that obtained in trapped ions [26,27] or NV
centers [28]. The main requirement is the possibility to
stabilize the target state j1; 0i, thereby providing the limit
cycle to be synchronized. Incoherent gain and damping, for
instance of the form of Eq. (5), could be experimentally
engineered by using the multi-level structure of these
systems [29,30]. The signal (6) can then be implemented
by a laser drive.
Conclusion.—We have shown that the smallest possible

system that can be synchronized is a single spin 1. We have
demonstrated how the general theory of synchronization
applies to this quantum system with no classical analogue.
This was achieved by relying on the Husimi Q representa-
tion, which we propose as a powerful tool to study
synchronization in spin systems.

FIG. 3. The distribution of the phase SðϕÞ as a measure of phase locking for γg ¼ 0.1γd. (a) The phase locks to different values when
the detuning Δ of the signal is varied. This is indicated by the dashed line that follows the peak max SðϕÞ of the distribution.
(b) Increasing the signal strength ε leads to a more pronounced phase locking. (c) The Arnold tongue. Significant phase locking is
achieved over a broader range of detuning Δ by increasing the signal strength ε. The tongue does not touch the bottom axis due to the
presence of noise.

FIG. 4. Influence of the signal strength ε onto the limit cycle for
zero detuning, Δ ¼ 0. In the gray-shaded area, the effect of the
signal is not limited to a perturbation of the free phase ϕ but
instead substantially deforms the limit cycle by increasing or
decreasing the energy of the spin, depending on the ratio γg=γd.
The corresponding Q functions are shown for ε ¼ γmin.
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The system presented here leads to many interesting
research directions. In particular, it can be used as an
elementary building block for studying synchronization of
limit cycles in a network of quantum spins, minimizing the
dimension of the resulting Hilbert space. The first step
towards this direction would be a pair of spins, for which
the interaction could be modeled by a direct effective
Hamiltonian or a mediating bosonic field. On a more
fundamental level, studying how synchronization scales
with the spin number leads to the open question of half-
integer spins greater than 1=2 which do not have access to
an eigenstate centered around the equator.
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