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Glasses at low temperature fluctuate around their inherent states; glassy anomalies reflect the structure of
these states. Recently, there have been numerous observations of long-range stress correlations in glassy
materials, from supercooled liquids to colloids and granular materials, but without a common explanation.
Herein it is shown, using a field theory of inherent states, that long-range stress correlations follow from
mechanical equilibrium alone, with explicit predictions for stress correlations in two and three dimensions.
“Equations of state” relating fluctuations to imposed stresses are derived, as well as field equations
that fix the spatial structure of stresses in arbitrary geometries. Finally, a new holographic quantity in 3D
amorphous systems is identified.
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The low-temperature properties of solids necessarily
reflect their inherent states and the local neighborhoods
thereof. In Debye’s model applicable to crystals, inherent
states are perfect crystalline arrangements, and harmonic
vibrations are phonons. In contrast, for amorphous solids,
there is no accepted, simple description of inherent states.
Since glasses universally present thermal and vibrational
anomalies with respect to crystals [1,2], for example, in
their heat capacity and thermal conductivity, one might
hope that a simple description would be forthcoming.
Moreover, even out-of-equilibrium amorphous solids such
as granular materials, emulsions, and colloids present
similar phenomenology in their vibrational properties
[3–6], further suggesting a unified approach.
Recent observations of stress correlations support such a

unification. In simulations both of granular materials [7,8]
and deeply supercooled liquids [9–11], the spatial shear-
stress correlator has quadrapolar anisotropy and a power-
law decay ∝ 1=rd in d dimensions. Similar observations
have been made for strain correlations in experiment, both
for colloids [12,13] and granular materials [14]. It was
argued in Refs. [9,11,15] that such correlations could be
explained by the dynamical process by which the systems
evolve, namely, by elastic relaxation of so-called Eshelby
transformations [9,11] or by a mode-coupling approach
[15]. However, in granular materials, the elastic range is
extremely small, such that essentially all observed defor-
mation is plastic [16,17], casting doubt on these dynamical
explanations. Very recently, Lemaître has shown that in 2D
systems, mechanical equilibrium (ME) and material isot-
ropy are sufficient to explain the anisotropy of stress
correlations [18], consistent with the theory of Henkes
and Chakraborty for granular materials [7] also in 2D.
Since 2D solids must be unusual, by the Mermin-Wagner
theorem, it is imperative to see if these results survive in

3D. A general theory of inherent states should predict these
stress correlations in both 2D and 3D and, ideally, be
applicable both to glasses and athermal systems.
Inherent states are defined by conditions of ME. Unlike

crystals, for which these constraints are trivially satisfied
by symmetry, in amorphous materials, ME requires a
delicate balance among the microscopic degrees of free-
dom. This is most spectacularly displayed near the
jamming transition at which rigidity is lost altogether
[19,20], but it remains an organizing principle throughout
the solid phase. In this Letter, we present a statistical field
theory of inherent states using only general principles
valid at large probing scales (Fig. 1). We show that ME
alone predicts the full form of stress correlations in 2D and
3D and derive the equations of state relating fluctuations

FIG. 1. Illustration of response to a localized force dipole in a
model glass, courtesy of Lerner and Bouchbinder [21]. Plotted on
the right is jr⃗jju⃗j, where u⃗ is the displacement response decaying
as ∼1=jr⃗j, where jr⃗j is the distance to the source. Beyond a few
particle diameters, the response is well represented by a dis-
ordered continuum field [22]. In field theory, the glass (left) is
replaced by a continuum, whose structure is characterized by one
or several smooth structural fields.
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to imposed stresses. We also find field equations that
determine the stress field in arbitrary domains.
In this Letter, we consider solids with both attractive and

repulsive interactions and present the main physical results
of potential interest to the glass community. In an accom-
panying manuscript [23], we show calculational details and
extend the results to solids in which forces are strictly
repulsive. In that work, we discuss our theory in the context
of previous work on so-called Edwards ensembles [24]
discussed in the granular matter community.
Amorphous systems are controlled either by external

stress or by the particle density; in this work, we consider
the stress ensemble [7,25] assuming that geometric degrees
of freedom (d.o.f.) have been marginalized over.
Stress correlators.—We first show howME constrains the

tensorial form of correlation functions without additional
hypotheses. This has recently been vividly demonstrated by
Lemaître in 2D systems [18]; here we show how a gauge
formulation of the problem immediately gives a compact and
complete answer and then generalize to 3D systems.
In the absence of body forces, the stress tensor of a

system in ME must be symmetric σ̂ ¼ σ̂t from torque
balance, and solenoidal 0 ¼ ∇ · σ̂ from force balance.
These relations imply that the stress tensor is both left
transverse, kiσij ¼ 0 for any wave vector ki, and right
transverse, σijkj ¼ 0. The number of d.o.f. in σ̂ is reduced
from d2 in d dimensions down to dðd − 1Þ=2, and, thus,
metastable states, as characterized by their stress, occupy a
vanishing fraction of configuration space.
Instead of carrying these constraints along in all theoretical

manipulations, it would be extremely convenient to work
directly on the manifold of metastable states. This is accom-
plished by a gauge representation in which the constraints are
identically satisfied. In two dimensions, this is achieved by

σ̂ ¼ ∇ ×∇ × ψ ; σik ¼ ϵijϵkl∂j∂lψ ; ð1Þ

where ψ is known as the Airy stress function [26] and
ϵ12 ¼ −ϵ21 ¼ 1, ϵ11 ¼ ϵ22 ¼ 0. It is easily verified that for
any function ψðr⃗Þ, both σ̂ ¼ σ̂t and 0 ¼ ∇ · σ̂ are identically
satisfied. Moreover, this representation also exists at the
particle scale [27–30]. The price of thegauge representation is
that stresses are invariant under the gauge transformation
ψ → ψ þ a⃗ · r⃗þ b, for any constants a⃗ and b. Stresses
depend only on the curvature of ψ .
In using ψ , we put ourselves on the manifold of

metastable states in 2D. It follows that in any ensemble,
the fundamental correlation function is then

Cψðr⃗; r⃗0Þ ¼ hψðr⃗Þψðr⃗0Þi − hψðr⃗Þihψðr⃗0Þi; ð2Þ

which is invariant under gauge transformations. The
stress-stress correlation function is hσijðr⃗Þσklðr⃗0Þic¼
ϵimϵjnϵkpϵlq∂m∂n∂ 0

p∂ 0
qCψ ðr⃗; r⃗0Þ and, assuming homo-

geneity, can be written as

hσijðr⃗Þσklð0Þic ¼ ϵimϵjnϵkpϵlq∂m∂n∂p∂qCψðr⃗; 0Þ: ð3Þ

Since the pressure-pressure correlator is hpðr⃗Þpð0Þic ¼
1
4
∇4Cψ ðr⃗; 0Þ, in periodic systems the full correlation

function at finite wave vector can be written as

hσijðk⃗Þσklð−k⃗Þic ¼ 4PT
ijP

T
klhpðk⃗Þpð−k⃗Þic; ð4Þ

where PT
ij ¼ δij − kikjjkj−2 is the transverse projector [31].

Equation (4) holds even in anisotropic systems.
From Eq. (3), one can easily determine all components of

the stress correlator if Cψðr⃗; 0Þ is known, which will be
derived below. First, we extend this result to 3D; the
analogous gauge representation is

σ̂ ¼ ∇ ×∇ × Ψ̂; σil ¼ ϵijkϵlmn∂j∂mΨkn; ð5Þ

where Ψ̂, a symmetric second-order tensor, is the Beltrami
stress tensor [32]. Note that by convention, the tensor curl is
defined by acting on the rightmost index, i.e., ð∇ × Ψ̂Þij ¼
ϵikl∂kΨjl. One easily verifies that for any tensor field Ψ̂ðr⃗Þ,
Eq. (5) describes a symmetric, solenoidal stress tensor. A
discrete representation of Ψ̂ also exists [29]. Since Ψ̂ has
the same number of d.o.f. as σ̂, we infer that some of these
must be redundant. Indeed, for any vector field p⃗ðr⃗Þ,
the stress tensor is invariant under the transformation
Ψ̂ → Ψ̂þ∇p⃗þ ð∇p⃗Þt, a nontrivial gauge freedom [33].
Accordingly, Ψ̂ can be further reduced. We will use the
Maxwell gauge Ψij ¼ δijψ j (no sum on j), which reduces

the number of d.o.f. in Ψ̂ from 6 to 3, as required. Then, the
fundamental correlation function is

Cijðr⃗; r⃗0Þ ¼ hψ iðr⃗Þψ jðr⃗0Þic; ð6Þ

which has at most six independent components and is
gauge invariant. If isotropy and homogeneity are assumed,
then this has two independent components, Aðr⃗Þ ¼
Ciiðr⃗; 0Þ (no sum on i) and Bðr⃗Þ ¼ Cijðr⃗; 0Þ (i ≠ j). One
easily sees that all stress correlators involving longitudinal
components vanish [23] so that again only the transverse-
transverse stress correlator survives, which now, however,
is tensorial.
Although simple to derive in the gauge formulation, the

above results completely prescribe the tensorial structure
of the stress correlator, a major aim of previous works
[9,11,15,18]. We also see that material isotropy is not
important in determining this structure, although it would
simplify the implied derivatives. To obtain predictions for
the correlation functions, we now proceed to field theory.
Gauge field theory of inherent states.—Since our interest

is in properties at large probing length, we work in the
continuum (Fig. 1). We are interested both in glasses and
out-of-equilibrium athermal systems. For glasses, the
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probability distribution over inherent states will contain a
Gibbs contribution from the energy at the glass transition
temperature but also a nontrivial entropic contribution, the
“complexity” [34]. For athermal systems, we do not even
have a Gibbs contribution from which to begin a theory.
To construct a stress ensemble valid out of equilibrium,

we take an operational point of view: typically, one can
probe a system only through forcing at the boundary.
Unlike thermally equilibrated systems, an athermal ensem-
ble needs to be explicitly explored through systematic
forcing. Such an ensemble can be explored dynamically, as
in quasistatic shear flow in a Couette cell, but we need not
restrict ourselves to this setting; indeed, most numerical
simulations and experiments generate an ensemble simply
by repeated application of a preparation protocol. In order
for a variable to be controllable under an athermal ensemble
generated by boundary forcing, it must be holographic, that
is, determined by boundary quantities only. The stress
tensor in a mechanically equilibrated system is indeed such
a quantity, as is easily seen [23].
In addition to being holographic, controllable quantities

should be additive so that the thermodynamic limit can
exist. Thus, the true controllable quantity is

R
Ω σ̂ known as

the force-moment tensor. It is a surprising fact that in
addition to

R
Ω σ̂, there is another holographic, additive

quantity depending on the stress. To see this, we initially
consider 2D and use Eq. (1). One sees that the determinant
of the stress tensor is

det σ ¼ 1

2
ϵijϵklσikσjl ¼

1

2
∂j(ð∂lψÞσjl); ð7Þ

where we used ϵ̂T · ϵ̂ ¼ δ̂ and ∇ · σ̂ ¼ 0. Thus, using the
divergence theorem, A ¼ R

Ω det σ can be written as a
boundary quantity. It can be shown that if n⃗ · σ̂ is known
around the boundary, where n⃗ is a boundary normal, thenA
is also fixed. In previous work, the discrete quantity
corresponding to A has been called the Maxwell-
Cremona area [29,35–38].
Let us now show that a similar quantity also exists in 3D,

although to our knowledge it has never been reported
before. Using Eq. (5), simple algebra shows that the
determinant of σ̂ is

det σ ¼ 1

3
∂p½ϵlmnð∇ × Ψ̂Þlqσpmσqn�; ð8Þ

a total divergence. The quantity A ¼ R
Ω det σ could be

called the Beltrami volume. It can be shown, similar to the
2D case, thatA can be recovered if n̂ · σ̂ is known around a
closed boundary.
Having identified controllable quantities

R
Ω σ and A, we

can construct a canonical ensemble in which the control
parameters are temperaturelike variables conjugate to σ
and A. This leads to an action

S0 ¼
Z
Ω
dV½α̂∶σ̂ þ γ det σ̂�; ð9Þ

where α̂−1 has been called the angoricity [39], and γ has
been called the keramicity [40]. The justification for the
canonical ensemble is based upon an assumed factorization
of the probability distribution for macroscopic variables
into that of subsystems, as discussed in detail in
Refs. [28,38,41,42], and has been successfully tested in
experiments on granular matter [40,43]. In such a gener-
alized Gibbs ensemble, the temperaturelike variables α̂ and
γ are argued to be spatially constant [41].
To complete the specification of the probability distri-

bution of the stress field, we need to address (i) the hard
constraints necessary to impose ME, and (ii) the a priori
probability with which each metastable state is sampled. As
discussed above, we can efficiently work on the manifold
of metastable states by writing σ̂ as a functional of ψ (2D)
and ψ i (3D). This leads to

P[σ̂½ψ �] ¼ 1

Z
ω[σ̂½ψ �]e−S0½ψ �; ð10Þ

where ω is the sampling probability of the state defined by
σ̂½ψ �, and we use ψ to refer either the scalar Airy stress
function (2D) or its vectorial analog in the Maxwell
gauge (3D). It is implicit that in ψ space there is a
large-wave-number ultraviolet cutoff Λ ∝ 1=D, where D
is the typical particle diameter.
In a strict canonical ensemble, the sampling probability

ω would be unity, as was taken in previous work on the
stress ensemble [28,42]. In fact, there is no general
justification for the flat measure out of equilibrium, even
if it was observed to hold to a good approximation in
several model systems [44,45]. In general, we expect the
flat measure to be unrealistic for a simple reason: since S0
can be written in terms of boundary quantities only, if
ω≡ 1 then Eq. (10) would be invariant under arbitrary
diffeomorphisms in the bulk, limited only by the UV cutoff
Λ. This would allow arbitrarily wild fluctuations of the field
down to the scale Λ, which is not physical: a solid stores
elastic energy, and whenever elasticity is present, stress
fluctuations will be penalized.
The sampling probability ωmust, thus, be nontrivial. For

arbitrary ω, nothing can be computed, but we are rescued
by the continuum limit. The general theory of the renorm-
alization group indicates that when a system is probed at
long length scales, most of its microscopic details are
irrelevant [46,47]. For any Lagrangian theory, power
counting can be applied to see which terms are necessary
to retain in a Landau-Wilson expansion

ω[σ½ψ �] ¼ e−
R

dVðA1½σ̂�þA2½σ̂;σ̂�þ…Þ; ð11Þ

where each Ai is a differential operator linear in each
argument.
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We need to consider the symmetry properties of the
stress tensor. In systems with both repulsive and attractive
interactions, a term linear in stress, which is not invariant
under σ̂ → −σ̂, will not ensure a well-behaved distribution;
for this, a term quadratic in stress is necessary. In the
continuum limit, the lowest-order term necessary to tame
fluctuations is then ησ̂∶σ̂. We assume that η defines the
correct units in which to construct the field theory so that if
lengths have dimensionþ1, then σ̂ has canonical dimension
−d=2 to make the action dimensionless. A term of the form
∂nσq then has a coupling constant with operator dimension
δn;q ¼ d − n − qd=2. Relevant operators are those with
δn;q ≥ 0 [46]. In d ¼ 2, 3, this includes only q ¼ 1,
n ≤ 1, and q ¼ 2, n ¼ 0. Assuming reflection symmetry,
so that a term gijk∂iσjk is excluded, the only new isotropic
terms added are ηtr2σ̂ and gtrσ̂2. Under strongly anisotropic
forcing, further terms would be necessary [23].
We are, thus, led to consider

P[σ̂½ψ �] ¼ 1

Z
e−S½ψ �; S ¼

Z
Ω
dVL½ψ �; ð12Þ

with

L½ψ � ¼ α̂∶σ̂ þ γ det σ̂ þ 1

2
η tr2σ̂ þ 1

2
g trσ̂ · σ̂: ð13Þ

As usual, it is sufficient to compute Z ¼ R
Dψe−S to extract

the behavior of controllable quantities.
At this stage, it is clear that we could have arrived at

Eq. (13) with power counting alone, without any consid-
eration of controllable quantities. However, this would miss
an important point: the parameters α̂ and γ are conjugate
to holographic quantities and, hence, under experimental
control. The “elastic” parameters η and g instead reflect the
properties of the particles and should not depend on details
of the experimental protocol. We will see the importance of
this distinction below.
Results: 2D.—The computation of Z is detailed in

Ref. [23]. Here we emphasize three key results. First,
we obtain the equation of state

ˆ̄σ ¼ 1

γ − g
α̂ −

ðηþ γÞ
ðγ − gÞðγ þ gþ 2ηÞ δ̂ trα̂ ð14Þ

relating the temperaturelike quantities α̂ and γ to the
mean stress hσ̂i ¼ ˆ̄σ. Second, we obtain the field equation
∇4ψ ¼ 0 that governs the distribution of stress in an
arbitrary geometry to be solved along with boundary
conditions given in Ref. [23]. Finally, we obtain the stress
correlator by solving ∇4ψgðr⃗Þ ¼ −η̃−1∇∇∶α̂g, with η̃ ¼
ηþ g and α̂g ¼ α̂0δðr⃗ − r⃗0Þ, and using

hσ̂ðr⃗Þσ̂ðr⃗0Þic¼−
1

2
δσ̂gðr⃗Þ=δα̂gðr⃗0Þ−

1

2
δσ̂gðr⃗0Þ=δα̂gðr⃗Þ ð15Þ

evaluated at α̂g ¼ 0. In an infinite domain, the solution to a
source at the origin is

4πη̃ψg ¼ −α log r2 þ a cos 2θ þ b sin 2θ; ð16Þ

where α̂0 ¼
� αþ a b

b α − a

�
. Boundary conditions can

be applied by adding to ψg an appropriate biharmonic
function ψb, ∇4ψb ¼ 0. Explicitly, the pressure-pressure
correlator is

hpðr⃗Þpð0Þic ¼ ð4η̃Þ−1δðr⃗Þ: ð17Þ

This is short range, but all second derivatives will have a
1=r2 decay with appropriate anisotropic dependences,
following Eq. (4). Note that the prediction of a perfect
δðr⃗Þ correlator is an artifact of the truncation of L to
Gaussian order; if higher-order terms were included in L,
such as tr4σ, then the pressure-pressure correlator would
have an exponential decay over the particle size length
scale ∼D, as found in Ref. [7]. The above results corre-
spond to Cψ ðr⃗; 0Þ ¼ r2 log r=ð4πη̃Þ, from which all corre-
lators can be obtained.
Results: 3D.—From the computation of Z [23], we find

that the mean stress ˆ̄σ ¼ ∇ ×∇ × Ψ̄ is fixed by the
equation of state

0 ¼ αij þ ηδij ˆ̄σkk þ g ˆ̄σij þ
1

2
γϵiklϵjmn ˆ̄σkm ˆ̄σln; ð18Þ

which is now nonlinear owing to the det σ term. Second, we
find that stresses in arbitrary geometries can be found by
solving

0 ¼ ðηþ gÞ∂i∂jσkk þ g∇2σij; ð19Þ

subject to appropriate boundary conditions. This is equiv-
alent to the Beltrami-Michell equation of linear elasticity
[48] with an effective Poisson ratio ν ¼ −η=ðηþ gÞ.
Finally, the stress correlator is again determined by
Eq. (15), where in an infinite domain the solution to a
source at the origin is now

gσ̂g ¼ −α̂g −
2η

g̃
δ̂∇ · u⃗þ η

g̃
trαg þ∇u⃗þ ð∇u⃗Þt ð20Þ

with

∇ · u⃗ ¼ −
1

8π

g̃
2ηþ g

�
α̂0∶∇∇ −

η trα̂0
g̃

∇2

�
1

r
; ð21Þ

u⃗ ¼ −
1

4π

�
α̂0 −

η

g̃
δ̂ trα̂0

�
· ∇ 1

r
−
ηþ g
g̃

1

∇2
∇∇ · u⃗; ð22Þ
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and g̃ ¼ 3ηþ g. The complex tensorial structure resulting
from this solution precisely matches what was found in
Ref. [11]. For example, the isotropic part is

trσ̂g ¼ −
2α

2ηþ g
δðr⃗Þ − 1

2ηþ g
=̂α∶∇∇ 1

4πr
; ð23Þ

where α̂0 ¼ αδ̂þ =̂α with tr=̂α ¼ 0. The pressure-pressure
correlator is short range, while the pressure-shear correlator
has anisotropy and long-range decay determined by the
Oseen tensor ∇∇r−1.
Holography.—From the above results, we can see that

the holographic terms play a fundamentally different role
from the others. Indeed, in large systems, α̂ and γ appear
only in the equations of state so that they control the
system-spanning k⃗ ¼ 0 fluctuations but not the finite wave
vector jk⃗j > 0 fluctuations. As a result, the stress-stress
correlation function should have a discontinuity or kink
at k⃗ ¼ 0.
To see these distinct fluctuations, let x̄≡

ð1=jΩjÞ RΩ dVxðr⃗Þ denote a spatial average, and consider

Ce ¼ hðp − hpiÞ2i; Cs ¼ hðp − p̄Þ2i; ð24Þ

where hi denotes an ensemble average. Ce measures the
ensemble pressure fluctuations, while Cs measures spatial
pressure fluctuations. In 2D, we find [23]

Ce ¼
1

2Vð2ηþ gþ γÞ ; Cs ¼
Λ2

16πη̃
− Ce: ð25Þ

Curiously, the total fluctuations Ce þ Cs are fixed by η̃
only, while the ensemble fluctuations depend additionally
on γ. This explains the discontinuity at k⃗ ¼ 0 observed
in Ref. [18].
Conclusion.—Using general field-theoretical arguments,

we have derived a field theory for the stress ensemble of
athermal amorphous solids and derived explicit forms of
the long-range stress correlations in both 2D and 3D. The
main assumptions underlying the theory are that (i) all
quantities are probed at lengths much larger than the
particle size, (ii) all interactions between the stresses are
themselves local, and (iii) no strict constraints such as
positivity or Coulomb friction have been imposed on the
forces; this last assumption is relaxed in Ref. [23], where
important modifications to the present theory for strictly
repulsive interactions are shown. Furthermore, we have
derived equations relating fluctuations to imposed stresses
and field equations that fix the spatial form of stresses in
arbitrary domains. We have also identified a new holo-
graphic quantity in 3D systems.
Our analysis has been restricted to the athermal limit.

At finite temperature, stress correlators will receive an
additional thermal contribution proportional to T and only

involving longitudinal stress components. This is not
expected to affect the transverse-transverse correlations
discussed here; a schematic construction of such a term is
shown in the Supplemental Material [49]. More impor-
tantly, at T > 0, glasses can transition between inherent
states (ISs) through activated processes. In Ref. [23], we
show that the theory as written here has an infinite-
dimensional symmetry; we expect transitions between
ISs to occur along the action of this symmetry. The effect
of activated processes will then depend on how this
symmetry is lifted; we expect this to be important also
for plasticity and yielding, to be tackled in future work.
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