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We use the strong intrinsic nonlinearity of a microwave superconducting qubit with a 4 GHz transition
frequency to directly detect and control the energy of a micromechanical oscillator vibrating at 25 MHz.
The qubit and the oscillator are coupled electrostatically at a rate of approximately 2π × 22 MHz. In this far
off-resonant regime, the qubit frequency is shifted by 0.52 MHz per oscillator phonon, or about 14% of the
3.7 MHz qubit linewidth. The qubit behaves as a vibrational energy detector and from its line shape we
extract the phonon number distribution of the oscillator. We manipulate this distribution by driving number
state sensitive sideband transitions and creating profoundly nonthermal states. Finally, by driving the lower
frequency sideband transition, we cool the oscillator and increase its ground state population up to
0.48� 0.13, close to a factor of 8 above its value at thermal equilibrium. These results demonstrate a new
class of electromechanics experiments that are a promising strategy for quantum nondemolition
measurements and nonclassical state preparation.
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The ability to bring manmade acoustical or mechanical
structures into the quantum regime has been demonstrated
in a variety of devices, from micromechanical oscillators in
opto- and electromechanics experiments [1,2], to acoustic
resonators in circuit quantum electrodynamics (cQED)
experiments [3]. Mechanical oscillators are generally very
linear harmonic oscillators at the quantum scale, and to
achieve arbitrary quantum control, one needs an extrinsic
nonlinearity [4]. Performing nonlinear detection is also a
way to enable quantum nondemolition measurement by
measuring energy instead of position or momentum [5–7].
One strategy is to use the Josephson junction used in
superconducting microwave circuits. It provides a dissipa-
tionless strong nonlinearity and has enabled the demon-
stration of landmark results in quantum science from the
preparation of arbitrary quantum states of microwave light
[8,9] to the demonstration of early-stage quantum
computers [10,11]. By using piezoelectric materials, res-
onant coupling between superconducting qubits and high
frequency (GHz) acoustic wave resonators has been
demonstrated [3,12].
This resonant approach is, however, restricted to a small

class of acoustic oscillators and loses many of the advan-
tages of the micromechanical oscillators used in opto- and
electromechanics experiments [13]. In these experiments, a
wide variety of techniques have been developed and have
made these mass-on-a-spring-like oscillators very versatile.
They can be used to interface otherwise incompatible
quantum systems such as superconducting circuits and
optical light [14], they are extraordinarily sensitive detec-
tors of force and strain [15,16], and they can be engineered
to have extremely long lifetimes [17]. However, these low

frequency mechanical oscillators have proven to be more
challenging to couple to superconducting qubits. One
strategy is to use a linear cavity to transfer nonclassical
microwave fields created by a qubit to a mechanical
oscillator by using the radiation pressure interaction
[18,19]. This approach has to battle the incompatibility
of large microwave pump powers with qubits as well as the
loss during the state propagation or transfer. Low frequency
mechanical oscillators have also been directly coupled to
qubits [20,21], but so far the interaction strengths have been
too weak to achieve control or detection of motion at the
scale of few phonons.
In this Letter, we directly couple a superconducting qubit

to a mechanical oscillator, achieving an ultrastrong inter-
action of gm ≈ 2π × 22 MHz, comparable to the oscillator’s
resonance frequency ωm ≈ 2π × 25 MHz. Similar to quad-
ratic optomechanics proposals [6], we detect the energy of
the oscillator instead of its position. More precisely, a
mechanical ac-Stark effect shifts the qubit frequency by
0.52 MHz per oscillator phonon, or about 14% of the
3.7 MHz qubit linewidth. The qubit line shape therefore
encodes the phonon number statistics, which we extract
using a Bayesian-based algorithm. The qubit-oscillator
system also exhibits blue and red sideband transitions,
analogous to those found in optomechanics and trapped
ions systems [13,22], at the sum (blue) and difference (red)
of frequencies. In contrast to optomechanics, the qubit
nonlinearity makes these sideband transitions number state
dependent. Using this property, we demonstrate control of
populations in the Fock space with a resolution of about 7
quanta. By driving the lower frequency sideband transition,
we cool the oscillator and increase its ground state
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population up to 0.48� 0.13, close to a factor of 8 above its
value at thermal equilibrium.
Because our mechanical oscillator frequency is so low

compared to that of a qubit at a few GHz, we require a qubit
that couples statically to the oscillator. We achieve this
interaction by forcing electrostatic charge onto the oscillator
and using a Cooper-pair box qubit [23,24], which, unlike a
transmon, is sensitive to charge at low frequency [25]. Our
device is presented in Figs. 1(a) and 1(b), and it can be
mapped on the circuit diagram of Fig. 1(c). The mechanical
oscillator is an aluminum drumhead, similar to those used in
previous electromechanics experiments [1]. It is suspended
over two separate aluminum electrodes and realizes a
mechanically compliant capacitor with each electrode.
When the drum vibrates in its first harmonic, the regions
of the drumhead located above the two bottom electrodes
move with opposite phases, as depicted in Fig. 1(c). The two
bottom electrodes are connected through two Josephson
junctions in parallel, which hybridize the charge states of the
two islands to form a flux tunable charge qubit [23,24]. We
operate this qubit at the charge degeneracy point. The device
is embedded in a far detuned coplanar waveguide resonator
such that the qubit can be read out and coherently controlled
using standard cQED techniques [26,27].
Our ability to apply a large dc bias on the drum is

essential to the working principle of the device. When such
a voltage is applied, a static charge accumulates on the
capacitor’s plates C�

drum and this charge is forced to move
along with the mechanical motion. The motion of this
charge is equivalent to an ac voltage applied differentially
over the qubit electrodes and creates a Josephson current
going through the junctions at mechanical frequency.
Mechanical motion is thus transversely coupled to the
qubit transition, realizing a Rabi Hamiltonian with a
coupling strength gm ≈ 2π × 3.7 MHz=V. Most of the data
we present were obtained with Vd ¼ 6 V.

At zero bias voltage, the motion of the drum only
modulates the capacitances of the qubit electrodes and
the qubit-mechanics coupling is negligible. We can use this
fact to characterize the bare qubit. Figure 2(a) shows a qubit
spectroscopy at Vd ¼ 0 V, obtained by measuring the qubit
excited state probability Pe as a function of the frequency
of a weak microwave drive. Fitting this to a Lorentzian, we
obtain a FWHM of about Γ�

2 ≈ 2π × 3.7 MHz, consistent
with coherent control data in the time domain [27].
When a 6 V dc bias is applied on the drum, the qubit

and the oscillator have a very large coupling strength
(gm=ωm ≈ 0.9). Nevertheless, this device is in a regime
where the mechanical frequency is more than 2 orders of
magnitude smaller than the qubit frequency. In this limit,
the two systems do not exchange energy spontaneously,
but instead they shift each other’s resonance frequency
according to the effective Hamiltonian [26,41–43],

H=ℏ ¼ ωma†aþ 1

2
ðωq þ 2χma†aÞσz; ð1Þ

where a is the phonon annihilation operator, σz is the qubit
Pauli operator, ωq is the Lamb-shifted qubit frequency, and
χm ≈ 2g2m=ωq includes the Bloch-Siegert shift [43–45]. We
determine 2χm ≈ 2π × 0.52 MHz by measuring how the
mechanical oscillator frequency is dispersively shifted by

(a)

(b)

(c)

FIG. 1. (a) False-colored scanning electron micrograph (at an
angle) of the micromechanical oscillator (blue) suspended above
two electrodes and forming a vacuum gap capacitor. (b) Top view
of the device showing the superconducting qubit electrodes
(yellow and green), shunted by two Josephson junctions (JJ)
in parallel. The dc bias line imposes a voltage Vd onto the
oscillator plate. (c) Equivalent circuit of the device.

(a)

(c)

(b)

FIG. 2. (a) Low power spectroscopy of the qubit decoupled
from the mechanical oscillator, at Vd ¼ 0 V. The solid line is a
Lorentzian fit indicating an intrinsic qubit linewidth of about
3.7 MHz. (b) Principle of the ac-Stark shift. The bare qubit
resonance is shifted by a fraction of its linewidth for each number
state. For a mechanical thermal state, the dressed qubit line shape
is the sum over all number states weighted by their population.
(c) Spectroscopy of the qubit coupled to the mechanical oscillator
(at thermal equilibrium). Inset: Phonon populations extracted
with a fit assuming a thermal distribution (dashed line) or with a
Bayesian-based deconvolution algorithm (full line).
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the qubit in its ground state [27]. Equation (1) shows how
the qubit transition frequency is dressed by each phonon
in the oscillator, ω̃qðnÞ ¼ ωq þ 2χmn. This effect is
sketched in Fig. 2(b). A figure of merit of our device is
given by the ratio between the single phonon Stark shift and
the qubit FWHM, 2χm=Γ�

2 ≈ 0.14. In terms of resolution,
this means that the sum of two phonon number states
different by 7 or more will yield a qubit spectrum with
two resolved peaks. As shown below, performing fits or
deconvolutions allows us to go beyond this limit.
In order to determine the phonon number distribution

from the ac-Stark shift, we make an approximation that
treats the qubit line shape dressed by the mechanical
motion as [46]

Pdressed
e ðωÞ ¼

X
n

PðnÞPbare
e ðω − 2χmnÞ; ð2Þ

where Pbare
e ðωÞ is the response of the bare qubit to a

spectroscopic drive at the frequency ω=2π. The validity of
this approximation depends on three conditions which are
well satisfied for phonon numbers up ≈50 [27,47]. This
keeps us from being quantitative for populations at larger
phonon numbers with Eq. (2), but as discussed below, it
allows us to make qualitative statements about arbitrary
distributions.
The measured spectroscopy of the qubit dressed by

the mechanical oscillator at thermal equilibrium with our

dilution refrigerator is shown in Fig. 2(c). The asymmetry
in the line shape reflects the thermal distribution of the
oscillator, with a tail going to high Fock numbers.
Assuming that the mechanical oscillator number state
distribution is that of a thermal state, PðnÞ ¼
nnth=ðnth þ 1Þnþ1, we can fit this line shape using Eq. (2)
with nth as a fit parameter and we extract nth ≈ 15 (about
18 mK) [27]. This procedure only works for mechanical
states for which we know the functional form of PðnÞ
(thermal states, coherent states, displaced thermal states,
etc). In order to be more general, we use an adapted version
of the Bayesian-based Lucy-Richardson algorithm to invert
Eq. (2) [27,48]. The extracted PðnÞ distribution is shown in
Fig. 2(c), along with the distribution obtained assuming a
thermal state. The reconstructed populations are plotted
along with confidence intervals obtained from a nonpara-
metric bootstrap [49]. The small bump in the data, just
above 3.85 GHz, is a manifestation of a deviation from
the small number of phonons approximation, which makes
Eq. (2) inexact.
We now use the qubit to control the energy distribution

of the mechanical oscillator by driving sideband transitions.
Similar to opto- or electromechanics systems, we can drive
a red or blue sideband transition. As depicted in Fig. 3(a), a
red sideband transition excites the qubit while removing a
phonon from the oscillator. Conversely, a blue sideband
transition excites the qubit and adds a phonon to the
oscillator. The crucial difference from that of conventional

(a) (c) (d)

(b)

FIG. 3. (a) Energy level diagram for ground and excited states of the qubit (g and e), dressed by phonon numbers n − 1, n, and nþ 1,
showing the number-sensitive qubit transition ω̃qðnÞ as well as the number-sensitive blue and red sideband transitions ωBðRÞðnÞ. (b) For
a blue sideband drive centered around ndrive, blue sideband transitions at neighboring number states are also driven, at a smaller rate.
(c) Qubit spectroscopy after a blue sideband drive centered at a few different ndrive. Dots are raw data, full lines are qubit line shapes
expected from the reconstructed phonon number distribution. Vertical black arrows indicate the position of ndrive mapped onto the
spectroscopic frequency axis (that is, ω ¼ ωq þ 2χmndrive). (d) Reconstructed experimental phonon populations (full lines) and master
equation simulation (dashed lines) based on independently measured parameters. The orange curves, corresponding to the reconstructed
populations of the thermal state, are shown for reference. Confidence intervals on the reconstruction (lighter shade) are obtained from a
nonparametric bootstrap [27]. Gray areas show where populations have been moved by the sideband drive.
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linear optomechanics is the number state dependence of
these transitions. The blue (red) transition frequencies are
given by

ωBðRÞðnÞ ¼ ωq � ωm þ 2χm

�
n� 1

2

�
: ð3Þ

Thus, driving a blue sideband transition at frequency
ωBðndriveÞ only drives a few transitions at neighboring
number states. The characteristic number of transitions
being driven around ndrive is given by Γ�

2=2χm [27], which is
on the order of 7 transitions. Because these are two-photon
transitions, we drive these sidebands with two tones: a
lower frequency (260 MHz) dither applied to the Cooper-
pair box gate, and a microwave tone detuned from the
transition by the dither frequency [27], as proposed
in Ref. [50].
Figure 3(c) shows qubit spectroscopies taken after a

microwave pulse at a few different blue sideband frequen-
cies, corresponding to transitions ranging from ndrive ≈ 1 to
42. When driving close to the ground state (ndrive ≈ 1), the
dressed qubit resonance is essentially shifted to slightly
higher frequency. However, driving at higher numbers
qualitatively changes the qubit line shape, showing a first
peak around the bare qubit frequency and a separate peak at
higher frequency. This line shape reveals how the phonon
populations are moved into distinct regions of the Fock
space. The associated reconstructed phonon distributions
PðnÞ are given in Fig. 3(d). As highlighted by the shaded
areas, these distribution show how our blue sideband pulse
takes phonon populations around ndrive (or below) and
transfers them to higher numbers. We can compare the
reconstructed experimental phonon distributions with a
semiclassical master equation simulation [dashed lines
in Fig. 3(d)]. In these simulations, the qubit decoherence
rates, the mechanical damping rate, the mechanical bath
temperature, and the sideband rates are determined from
independent measurements [27]. We attribute the difference
between experiment and simulation mainly to deviations
from Eq. (2) that yield inaccurate reconstructions.
Nevertheless, the qualitative agreement between simulation
and experimental data demonstrates how the qubit can be
used to control the phonon population in the drum with a
resolution of a few phonons and up to a relatively large
number of phonons.
Finally, Fig. 4 shows how we use the qubit to cool

thermal motion down with a red sideband drive. Cooling
macroscopic mechanical motion with a superconducting
qubit has been extensively investigated theoretically
[51–55], but to our knowledge this is the first experimental
demonstration of such a scheme. After a 150 μs red
sideband pulse at ndrive ≈ 8, the population around n ¼ 8
has been emptied and transferred to Fock numbers n ≤ 2
(red data in Fig. 4). At this time, population at higher
energy has not yet been affected because it is not in the

number-sensitive window where the sideband drive is
acting. Leaving the sideband drive on for a longer time,
comparable to the mechanical damping time of about
1.7 ms, this higher number population slowly decays down
into the range where the sideband drive is effective. This
population is then also transferred to low phonon number
and further increases the population around the mechanical
ground state to reach Pð0Þ ≈ 0.48� 0.13 (black data). The
uncertainty on Pð0Þ is here dominated by our uncertainty in
the bare qubit frequency [27] (uncertainty bands in Fig. 4
do not include this systematic effect). After this long pulse,
the narrowed qubit line shape is a direct signature of the
decreased phonon variance associated with lower mechani-
cal temperature. For longer duration red sideband pulses,
the drive begins to trivially heat the oscillator rather
than cool it. Nevertheless, the demonstrated performance
should be sufficient to prepare sub-Poissonian states at
large average phonon number.
Looking forward, a natural next step would be to

increase χm by increasing Vd. The maximum voltage we
could apply in this study (6 V) was limited by our ability to
read out the qubit through its dispersive coupling to the
microwave resonator. For reasons we do not understand,
the readout contrast diminished and became bistable
with increasing voltage. Understanding and solving this
problem would allow us to turn up Vd, in principle up to
21 V (limited by electrostatic instability). The single-
phonon Stark shift 2χm would then be approximately
2π × 10 MHz, exceeding the bare qubit linewidth and
reaching the strong dispersive limit [56]. In addition, the
ultrastrong qubit-mechanics interaction demonstrated here
could also be combined with the microwave cavity to enter
a rich three-body interaction regime [57]. This could be
used to prepare nonclassical states such as mechanical cat

FIG. 4. Spectroscopy of the qubit after a red sideband drive of
150 μs (dark red) and 1.5 ms (black), centered around
ndrive ≈ 8. Dots are raw data, full lines are qubit line shapes
expected from the reconstructed phonon number distribution.
Inset: Reconstructed experimental phonon populations (log
scale, with bootstrap confidence intervals in lighter shades).
The dotted line is the distribution of a fit to a thermal state. The
horizontal black arrow indicates the ground state population of
about 0.48 (see text).
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states and tripartite entangled states involving the micro-
wave cavity, the qubit, and the mechanical oscillator.
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