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We present a new effective description of macroscopic Kruskal black holes that incorporates corrections
due to quantum geometry effects of loop quantum gravity. It encompasses both the “interior” region that
contains classical singularities and the “exterior” asymptotic region. Singularities are naturally resolved by
the quantum geometry effects of loop quantum gravity, and the resulting quantum extension of the full
Kruskal space-time is free of all the known limitations of previous investigations of the Schwarzschild
interior. We compare and contrast our results with these investigations and also with the expectations based
on the AdS=CFT duality.
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Black hole singularities have drawn a great deal of
attention in the quantum gravity literature especially over
the past two decades (see, e.g., Refs. [1–21]). While there is
general consensus that these singularities are windows onto
physics beyond Einstein, there is still no agreement on how
they are to be resolved in quantum gravity, and indeed, on
whether they would be resolved. For example, in the
Penrose diagram of an evaporating black hole that
Hawking drew over 40 years ago [22], the singularity
persists as part of the future boundary of space-time even
after the black hole has completely disappeared. Although
this persistence is not based on a detailed calculation, this
paradigm is still widely used.
Thegoal of this Letter is to address this general issue using

a new effective theory that describes the quantum corrected
geometry of macroscopic Schwarzschild-Kruskal black
holes. Salient features of this geometry can be summarized
as follows: (i) All curvature scalars have absolute (i.e., mass
independent) upper bounds. (ii) Space-time admits an
infinite number of trapped, anti-trapped, and asymptotic
regions. (iii) In the large mass limit, consecutive asymptotic
regions of the extension have the same Arnowitt-Deser-
Misner (ADM) mass. (iv) In the low curvature regions
(e.g., near and outside horizons) quantum effects are
negligible. As we discuss below, previous effective theories
[1,2,4–9,14,18] that also resolved the black hole singularity
have some undesirable features. The new description is free
of these limitations.
We will begin with a discussion of our effective

dynamics in the phase space, then summarize its predic-
tions for space-time geometry, and finally compare and
contrast our results with those in the literature.
Phase space of the Schwarzschild “interior.”—As is

well known, the Schwarzschild “interior”—the region of
Kruskal space-time bounded by horizons—is isometric

with the vacuum Kantowski-Sachs space-time. It is foliated
by spatially homogeneous 3-manifolds Σ with topology
R × S2. We denote the natural coordinates adapted to the
spatial isometries by x, θ, ϕ. Because Σ is noncompact in
the x direction and fields are homogeneous, in the phase
space framework one encounters infinities. Therefore, as is
common, we introduce a fiducial cell C in Σ with the same
topology R × S2 but with x ∈ ð0; LoÞ and restrict phase
space variables to C. (Final physical results, of course, have
to be well defined as this infrared cutoff Lo is removed.)
In loop quantum gravity (LQG), they are the gravitational
SU(2) connections Ai

a and their canonical conjugate
momenta Ea

i [that represent (densitized) orthonormal tri-
ads]. Because of the underlying symmetries, the pairs Ai

a,
Ea
i have the form [1,7,23]

Ai
aτidxa ¼

c
Lo

τ3dxþ bτ2dθ − bτ1 sin θdϕ

þ τ3 cos θdϕ; ð1Þ
Ea
i τ

i∂a ¼ pcτ3 sin θ∂x þ
pb

Lo
τ2 sin θ∂θ −

pb

Lo
τ1∂ϕ; ð2Þ

where τi are the SU(2) generators, and b; pb;c; pc now
represent the canonically conjugate pairs. The Poisson
brackets are given by fc; pcg ¼ 2Gγ and fb; pbg ¼ Gγ,
where γ is the Barbero-Immirzi parameter of LQG [21].
Given any choice of the time coordinate τ and the
associated lapse Nτ, each point in the phase space defines
a 4-metric with Kantowski-Sachs isometries:

ds2 ¼ −N2
τdτ2 þ

p2
b

jpcjL2
o
dx2 þ jpcjðdθ2 þ sin2θdϕ2Þ: ð3Þ

Finally, the requirement that physical quantities must be
insensitive to rescalings of the fiducial Lo implies that they
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can depend only on b; pc and the combinations c=Lo and
pb=Lo. If one uses the Hamiltonian constraint HðNÞ of
general relativity (GR), as one would expect, the dynamical
trajectories on phase space reproduce the Schwarzschild
interior geometry [1,7,23].
Effective dynamics.—In loop quantum cosmology

(LQC), the full quantum evolution is extremely well
approximated by certain quantum corrected, “effective
equations.” For the Schwarzschild interior, we will only
consider the analogous effective theory because the explicit
action of our quantum constraint operator remains too
complicated to explore full quantum dynamics.
The expression of H½N� of the Hamiltonian constraint of

LQG contains curvature Fi
ab of the gravitational connection

Ai
a. In GR, curvature components can be obtained by first

considering ratios ðh□=A□Þ, where h□ is the holonomy of
Ai
a around suitable plaquettes □ and A□ is the area

enclosed by □, and then taking the limit as the plaquettes
shrink to a point. In LQG, the area operator has minimum
nonzero eigenvalueΔ ¼ 4

ffiffiffi
3

p
πγl2

Pl—called the area gap—
and curvature operators are given by ĥ□ where now the
plaquettes□ enclose area Δ [21,24]. In our case we need to
introduce three plaquettes to obtain curvature operators
F̂θ;ϕ, F̂x;θ, F̂x;ϕ. Lengths of the links in these plaquettes
introduce two “quantum parameters,” δc for the x-direc-
tional link, and δb for links in the 2-spheres (“quantum”
because they depend on the area gap Δ). These parameters
feature in the expression of the Hamiltonian constraint and
hence also in the dynamical equations in the effective
theory. It turns out that the equations can be solved exactly
for a convenient choice of the lapse N,

N ¼ γsgnðpcÞjpcj1=2δb
sinðδbbÞ

; ð4Þ

provided the quantum parameters δb, δc are chosen
to be appropriate Dirac observables (i.e., certain phase
space functions which are constants of motion in the
effective theory). This is a subtle point because whether
a phase space function is a Dirac observable depends on
HðNÞ which itself depends on δb, δc. However, self-
consistent choices of δb, δc can be made in a systematic
fashion [23]. Once such choice is made, explicit solutions
are given by

tanðδccðTÞ=2Þ ¼ ∓ γLoδc
8m

e−2T;

pcðTÞ ¼ 4m2

�
e2T þ γ2L2

oδ
2
c

64m2
e−2T

�
;

cos (δbbðTÞ) ¼ bo tanh

�
1

2

�
boT þ 2tanh−1

�
1

bo

���
;

pbðTÞ ¼ −2mγLoδb sin (δbbðTÞ)=½sin2(δbbðTÞ)þ γ2δ2b�:

Here T is the time coordinate defined by N, bo ¼
ð1þ γ2δ2bÞ1=2, and m ≔ ðpc sin δccÞ=ðγLoδcÞ is a Dirac
observable. A detailed examination shows that m ¼ GM
where M is the black hole mass [7,23].
Let us note a few properties of these quantum corrected

dynamical trajectories. The black hole horizon corresponds
to T ¼ 0 where b—and hence also pb—vanishes, and the
Killing vector ∂=∂x becomes null. T then decreases as we
move to the future in the interior region. One can calculate
expansions θ�ðTÞ of the two null normals la

� to the round 2-
spheres. As expected, θ� are both negative near the black
hole horizon; hencewe have a trapped region.However, they
both vanish (simultaneously) when dpc=dT vanishes. This
does occur along each dynamical trajectory, and occurs once
and only once, at time TT ¼ ð1=2Þ lnðγLoδc=8mÞ. In the
space-time picture, at T ¼ TT we have a transition surface
T , to the past of which we have a trapped region and to the
future ofwhichwehave an antitrapped region (inwhich both
expansions are positive). Just as the trapped region has a past
boundary given by the black hole horizon, the antitrapped
region has a future boundary at a white hole type horizon
where, again, sinðδbbÞ and hencepb vanish. This occurs at a
finite value of time, T0 ≔ −ð4=boÞ tanh−1ð1=boÞ. What
happens in the classical limit (Δ → 0 and hence) δb → 0
and δc → 0? In this limit, T0 → −∞ hence b, c diverge and
pb, pc vanish; this is just the classical singularity. In this
precise sense, the transition surface T of the effective theory
replaces the singularity of GR. While in GR the interior
region is bounded by the black hole horizon in the past and
the singularity in the future, in the quantum corrected theory
it is bounded by the black hole horizon in the past (T ¼ 0)
and a white-hole horizon in the future (T ¼ T0)—depicted
by the central diamond in Fig. 1.

FIG. 1. The Penrose diagram of the extended Kruskal space-
time. The central diamond B ∪ W is the interior, containing the
trapped region B and an antitrapped region W, separated by the
transition surface T that replaces the classical singularity. I, II, III,
and IV are asymptotic regions and the arrows represent the
translational Killing vector Xa∂a ≡ ∂=∂x.
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Quantum parameters.—First investigations of the
Schwarzschild interior [1,2,6] used the so-called “μo
scheme” that had been introduced earlier in Friedmann,
Lemaitre, Robertson, Walker (FLRW) cosmology [25], and
set δb, δc to a constant, δ. This scheme turned out to have
serious limitations in FLRW models and was replaced by
the so-called “μ̄ scheme” in Refs. [24,26]. Subsequently, μ̄-
inspired strategies were implemented for the Schwarzschild
“interior” [4,5,9]. However, detailed investigations
showed that both of these schemes lead to physically
undesirable results in this case [7,11]. Therefore, we place
ourselves “in between” the two strategies and systemati-
cally arrive at the expressions of δb, δc by specifying the
plaquettes enclosing the minimum area: The plaquettes are
now chosen to lie on the transition surface T , where, as we
will see, curvature invariants assume largest values.
Because each solution admits one and only one transition
surface T , δb, δc are now (judiciously chosen) Dirac
observables. They are not constants on the full phase space
as in the “μo-scheme” but, in contrast to the “μ̄-scheme,”
they are constant along each effective dynamical trajectory.
As Ref. [23] shows in detail, in the large m limit this
procedure yields

δb ¼
� ffiffiffiffi

Δ
p
ffiffiffiffiffiffi
2π

p
γ2m

�
1=3

; Loδc ¼
1

2

�
γΔ2

4π2m

�
1=3

: ð5Þ

This specific choice plays a key role in freeing our effective
dynamics from limitations of previous works.
The Schwarzschild “exterior”.—Analysis of the interior

makes crucial use of spatial homogeneity. Since the
“exterior” region does not admit spatially homogeneous
slices, effective theories had not been extended to the
exterior asymptotic regions. Note, however, that the asymp-
totic region can be foliated by timelike homogeneous slices
(r ¼ const in the Schwarzschild coordinates); hence one
can construct a Hamiltonian framework based on them.
This seems unusual at first but the “evolution” in the radial
direction is again generated by a Hamiltonian constraint,
equations of motion are again ordinary differential equa-
tions and they can again be explicitly solved using a
convenient choice of the lapse function. (Indeed, one can
extend the Hamiltonian framework to incorporate timelike
hypersurfaces even for full GR and it would be of interest to
extend LQG ideas to include these frameworks.)
Indeed, this Hamiltonian theory can be obtained rather

easily from that of the interior region. Since the homo-
geneous slices T ¼ const (i.e., r ¼ const in Schwarzschild
coordinates) are now timelike, the LQG phase space
variables Ãa, Ẽa now take values in SUð1; 1Þ rather than
SU(2). Hence one only needs to replace the su(2) basis τi
by the SUð1; 1Þ basis τ̃i. As a result, the connection and the
triad now have the same form as Eqs. (1) and (2), with
replacements τi → τ̃i and ðb; c;pb; pcÞ → ðb̃; c̃; p̃b; p̃cÞ.
Finally, since τ̃i are given by τ̃1 ¼ iτ1, τ̃2 ¼ iτ2, τ̃3 ¼ τ3,

the phase space description for the exterior region can be
obtained simply by substitutions

b → ib̃; pb → ip̃b; c → c̃; pc → p̃c; ð6Þ

in the phase space description of the interior, with real b̃,
p̃b, b̃, p̃c (for details, see Ref. [23]). Then the dynamical
trajectories for the exterior region are given by

tan
�
δc̃c̃ðTÞ

2

�
¼∓γLoδc̃

8m
e−2T;

p̃cðTÞ¼ 4m2

�
e2T þ γ2L2

oδ
2
c̃

64m2
e−2T

�
;

cosh(δbb̃ðTÞ)¼ bo tanh

�
1

2
boTþ tanh−1

1

bo

�
;

p̃bðTÞ¼−2mγLoδb̃ sinh(δb̃b̃ðTÞ)=½γ2δ2b̃− sinh2(δb̃b̃ðTÞ)�:

Here δb̃ ¼ δb and δc̃ ¼ δc are given in Eq. (5), but now,
T > 0 rather than T < 0 (or, r > 2m rather than r < 2m).
Note that there is no change in the equations in the c sector,
hence the Dirac observable m is the same as in the interior.
However, in the b sector, there are some changes in signs
and the trigonometric functions are replaced by the corre-
sponding hyperbolic-trigonometric ones.
Properties of the quantum extended Kruskal space-

time.—For any given value of m, we have an effective
trajectory for the interior with T0 < T < 0 and one for the
exterior with 0 < T < ∞. It is easy to verify that these two
trajectories are smooth continuations of each other at
T ¼ 0. In the space-time picture, although the T, x chart
breaks down at T ¼ 0 (just as the Schwarzschild r, t chart
breaks down at r ¼ 2m), the effective 4-geometry is in fact
smooth. Indeed, since the 4-metric of Eq. (3) is spherically
symmetric, and the product ðgxxÞðgTTÞ is smooth and tends
to 1 as T → 0, as in GR one can introduce Eddington-
Finkelstein type coordinates to make the smoothness of the
4-metric manifest. By repeating this procedure across other
horizons one arrives at the smooth extension of Kruskal
space-time with an infinite number of asymptotic, trapped
and antitrapped regions as depicted in Fig. 1.
Not only are the curvature scalars bounded on the full

extension but, interestingly, for macroscopic black holes
these bounds are uniform, i.e., independent of m. As one
would expect, the upper bounds are reached on the
transition surface T and have the following asymptotic
forms in the large m limit:

CabcdCabcdjT ¼ 1024π2

3γ4Δ2
þO(

	 Δ
m2


1
3

ln
m2

Δ ); ð7Þ

and similarly for other curvature invariants [23]. Note that
the area gap Δ appears in the denominator; finiteness of all
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upper bounds can thus be directly traced back to quantum
geometry. In the limit Δ → 0, the leading term diverges,
reflecting the fact that in GR this invariant tends to infinity
at the singularity.
Although there is no physical matter, Einstein’s vacuum

equations receive quantum corrections. It is often conven-
ient to re-interpret the nonvanishing Einstein tensor as an
effective stress-energy tensor Tab, induced by quantum
geometry. As one would expect, Tab violates the strong
energy condition and the violation is large near the
transition surface T . For example, in Planck units, forM ¼
106 the energy density near T is ρ ∼ −1. However, Tab
drops off very quickly as one moves away from the
transition surface. At the horizon, TabTab ∼ 10−35. In
the exterior asymptotic region it further decays very rapidly
[23]. Thus, as LQC, quantum geometry effects are suffi-
ciently strong in the Planck regime to resolve the singu-
larity but they decay rapidly for macroscopic black holes
(indeed, already when M is only 106). For astrophysical
black holes, then, in contrast to some recent proposals (see,
e.g., Ref. [27]), GR provides an excellent approximation
near and outside horizons in our effective theory.
Since the effective metric is asymptotically flat, one can

calculate the ADM mass MADM in various asymptotic
regions. A natural question is whether there is mass
amplification A½I; III� as one goes from an asymptotic
region I to another, to its future, III (see Fig. 1). In the
large m limit, we find [23]

A½I; III� ¼ 1þO
��

mPl

m

�2
3

ln

�
m
mPl

��
: ð8Þ

Thus, if the radius of the black hole horizon in asymptotic
region I is, say, rB ¼ 3 km, corresponding to a solar mass,
that of the white hole horizon in asymptotic region III
is rW ≈ ½3þOð10−25Þ� km.
At first this is puzzling from considerations of the Komar

mass K½S� ≔ −ð1=8πGÞ HS εabcd∇cXddSab, associated
with the translational Killing field Xa ≡ ∂=∂x and a round
sphere S. If S1 is chosen to lie on the black hole horizon in
region I, and S2 on the white hole horizon in region III, we
have: K½S2�−K½S1�¼2

R
Σ̄ðTab−ðT=2ÞgabÞXadVb, where

Σ̄ is a timelike 3-surface joining S1 and S2. Now, the
integrand in this 3-surface integral is large and negative
because of properties of Tab in the interior region.
Therefore, one would expect K½S2� to be very different
from K½S1�. How can the two ADM masses be then equal?
It turns out that Tab is subtle: The effective energy density
is negative and sufficiently large to resolve the singularity,
but also delicately balanced to make the volume integral
precisely equal to −2K½S1� (in the large m limit), making
K½S2� ¼ −K½S1�. Finally, by smoothness of the effective
space-time geometry, while Xa is future directed in region I,
it is past directed in region III. Since the ADM mass refers
to the unit future pointing asymptotic time translation,

K½S2� ¼ −K½S1� is precisely the necessary and sufficient
condition for MADMðIÞ ¼ MADMðIIIÞ. This calculation
brings out the fact that there are highly nontrivial con-
straints if one wants to achieve both, singularity resolution,
and the (nearly) unit amplification factor for the mass in the
transition from the trapped to the antitrapped region. Our
effective geometry satisfies them automatically.
Comparison.—Over the last decade, the fate of

Schwarzschild singularity in quantum gravity has been
discussed extensively in LQG [1–11,13–20]. For compari-
son we will focus only on the large body of work on
effective dynamics in the Schwarzschild interior. In all
these investigations the black hole singularity is resolved.
However, subsequent analysis has shown that the detailed
dynamics in these works have physically undesirable
features. (i) Physical results in Refs. [1–3,6] can depend
on the fiducial cell (through Lo), hence details of their
predictions have no invariant significance. (ii) Approaches
in Refs. [4,5,7–9,14,18] lead to large quantum effects in
low curvature regions. For example, for large black holes,
the quintessentially quantum transition surface T can
emerge in regions with arbitrarily small curvature in some
approaches (e.g., Ref. [7]), while dynamics of other
approaches [4,5,9,14,18] drive their effective trajectories
to phase space regions where their basic underlying
assumptions are violated [23]. (iii) There can be large
mass amplification in the transition from black to while
hole horizon. For example, Ref. [7] leads to the amplifi-
cation A½I; III� ≈ ðm=mPlÞ3 as one evolves from the trapped
region to the antitrapped one; thus if rB ¼ 3 km corre-
sponding to solar mass, then rW ≈ 1093 Gpc. The physical
origin of this enormous effect has remained unclear. Our
effective description is free of all these undesirable features.
(For details, see sections IV D and VI of Ref. [23].)
Another key difference from previous investigations is

that they considered only the Schwarzschild interior
and treated it as a homogeneous (Kantowski-Sachs) cos-
mology, emphasizing issues that are central to anisotropic
cosmological models such as bounces of scale factors (see,
e.g., Refs. [4,5,13]) and boundedness of anisotropic shears
(see, e.g., Ref. [11]). By contrast, our effective theory
encompasses both the interior and the asymptotic regions
and our focus is on black hole aspects that they did not
consider: trapped and antitrapped surfaces in the interior
region, the transition surface T , properties of the Komar
mass, and the ADMmass in the asymptotic region. Finally,
transition from a trapped to an antitrapped region also
appears in the path integral approach to LQG [16,17].
However, there one considers gravitational collapse, and
the focus is on calculating transition amplitudes between
specific asymptotic configurations under some approxima-
tions, while we consider the eternal Kruskal black hole
and our quantum corrected equations provide a detailed
description of singularity resolution within the effective
theory.
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Our analysis also provides a concrete context to
compare and contrast singularity resolution due to quan-
tum geometry in LQG, and an AdS=CFT-based expect-
ation that quantum gravity will or should not resolve
certain bulk singularities, including those of the classical
Schwarzschild–anti-de Sitter black holes [12]. This con-
clusion about the bulk geometry is arrived at indirectly,
starting from physically desirable properties of quantum
field theories on the boundary, assuming the bulk-boun-
dary duality. In LQG, on the other hand, one works
directly in the bulk. There is tension between the two in
that our effective theory does resolve the Schwarzschild
singularity in a coherent fashion. However, there is no
contradiction since the AdS=CFT arguments do not go
through in the asymptotically flat context. Therefore, it is
of interest to investigate if the effective theory proposed
here can be extended to the asymptotically Anti-de Sitter
case. A result in either direction will provide valuable
guidance.
Limitations.—We conclude with a discussion of limi-

tations of our approach. While our quantum corrected
effective geometries are of interest in their own right
because of their various properties, so far, they have not
been arrived at systematically starting from the full
quantum theory, as was done in LQC [24,28,29]. This
step will likely require significant effort because one
would have to first simplify the explicit action of our
quantum Hamiltonian constraint considerably. Next, sta-
bility analysis of the extended Kruskal space-time will
have to be carried out using the analog of the well-
developed perturbation theory on quantum cosmological
space-times (see, e.g., Ref. [21]). The most important
limitation is that we have discussed eternal rather than
dynamical black holes. To address key conceptual issues
such as the possibility of information loss, one would have
to consider black holes formed by gravitational collapse,
where space-time structure is significantly different
[30,31]. Nonetheless, just as the analysis of quantum
fields on the Kruskal space-time provided useful tools to
investigate the Hawking process in physically more
realistic collapsing situations, techniques developed in
this quantum extension of Kruskal space-time should be
helpful in the analysis of the end point of the dynamical
evaporation process.
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