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We study the thermal evolution of a highly spin-imbalanced, homogeneous Fermi gas with unitarity
limited interactions, from a Fermi liquid of polarons at low temperatures to a classical Boltzmann gas at
high temperatures. Radio-frequency spectroscopy gives access to the energy, lifetime, and short-range
correlations of Fermi polarons at low temperatures T. In this regime, we observe a characteristic T2

dependence of the spectral width, corresponding to the quasiparticle decay rate expected for a Fermi liquid.
At high T, the spectral width decreases again towards the scattering rate of the classical, unitary Boltzmann
gas, ∝ T−1=2. In the transition region between the quantum degenerate and classical regime, the spectral
width attains its maximum, on the scale of the Fermi energy, indicating the breakdown of a quasiparticle
description. Density measurements in a harmonic trap directly reveal the majority dressing cloud
surrounding the minority spins and yield the compressibility along with the effective mass of Fermi
polarons.
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Landau’s Fermi liquid theory provides a quasiparticle
description of the low-temperature behavior for a large class
of unordered fermionic states of matter, including most
normal metals, atomic nuclei, and liquid helium-3 [1].
Strongly interacting Fermi gases with highly imbalanced
spin populations have been identified as belonging to the
same class [2–14]. The quasiparticles in spin-imbalanced
Fermi gases are Fermi polarons: spin impurities dressed by
an excess cloud of majority fermions. The stability of
quasiparticles in a Fermi liquid is a consequence of the
restricted phase space for collisions due to Pauli blocking.
With increasing temperature T, the accessible phase space
increases, and the lifetime of quasiparticles shortens, leading
to the breakdown of Fermi liquid theory. In this intermediate
temperature regime, the gas is neither a Fermi liquid nor a
classical Boltzmann gas. For strong interactions, this regime
is void of well-defined quasiparticles and controlled by the
quantum critical point of the unitary spin-balanced gas at
zero chemical potential and temperature [15–17].
Ultracold Fermi gases offer a unique opportunity to

study the crossover from a low-temperature Fermi liquid to
a classical Boltzmann gas, due to the large accessible
temperature range. In spin-imbalanced Fermi gases, the two
inequivalent Fermi surfaces provide additional richness. As
the temperature is lowered from the classical regime, the
Fermi surface of the majority forms first, giving minority
spins the quasiparticle character of polarons. At even lower
temperatures, the polarons themselves become quantum
degenerate and form a Fermi surface.
In this Letter, we access the entire crossover from

degenerate polarons to the classical Boltzmann gas through

the quantum critical region. The internal properties of the
polaronic quasiparticles are measured via radio-frequency
(rf) spectroscopy [10,18–20] on a homogeneous Fermi gas
[21,22]. At low temperatures, the peak position and width
of the rf spectra reflect energy and decay rate of the
polarons. Note that the decay rate of a quasiparticle can be
viewed as the rate of momentum relaxation in a transport
measurement (see, e.g., [7]). The wings of the rf spectra
yield information about the short-range correlations and the
contact [23–27], controlling the change in the polaron
energy with interaction strength. Further thermodynamic
properties of the polaron gas are directly obtained from
in situ density profiles in the presence of a harmonic
potential [6,12,13,28–30], revealing the number of atoms in
the majority dressing cloud of a polaron. The compress-
ibility of the impurity gas at low temperature yields the
effective mass of Fermi polarons.
For the spectroscopic studies we employ rf ejection

spectroscopy, where the many-body state is first prepared
and then probed by transferring a small fraction of one spin
component into a weakly or noninteracting final state.
Radio-frequency ejection spectroscopy has been used to,
e.g., measure interactions, correlations, pairing phenomena
in Fermi gases [31,32], and more specifically, the binding
energy of the attractive Fermi polaron at low temperatures
[10,19]. A prerequisite for our measurements is a spatially
uniform box potential. This avoids the spectral broadening
caused by an inhomogeneous density and impurity con-
centration [21,33]. The three energetically lowest hyperfine
states of 6Li (labeled j1i; j2i; j3i) are utilized to create and
probe the strongly interacting spin mixture. The minority
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(impurity) and majority components are prepared in j↓i ¼
j1i and j↑i ¼ j3i and transferred via the rf drive into the
final state jfi ¼ j2i [33,37]. All measurements have been
performed at a magnetic field of 690 G, where the
interactions between minority and majority atoms are
unitarity limited. Final state interactions are weakly repul-
sive with kF↑a↑f ≲ 0.2 (a↑f ¼ 62 nm). The impurity con-
centration (minority to majority density ratio n↓=n↑) is
controllably varied between 10% and 30%.
The rf response is linked to the probability that a hole of

energy E and momentum p is excited by ejecting a particle
from the many-body state, as described by the occupied
spectral functionA−↓ðp; EÞ [10,32,38,39]. Detecting a free
particle of momentum p after rf transfer implies a momen-
tum p and energy Ep ¼ p2=2m − μ↓ − ℏω of the leftover
hole, where μ↓ is the minority chemical potential and ℏω is
the energy of the rf photon with respect to the non-
interacting transition. The number of transferred minority
atoms NfðωÞ is proportional to the momentum integral of
the occupied spectral function A−↓ðp; EpÞ. Fermi liquids
feature a spectral function that is sharply peaked around
ϵ0 þ p2=2m� − μ↓, with the effective mass m� and dressed
energy ϵ0 of the quasiparticles. The width of the peak
is determined by the quasiparticle decay rate Γðp; TÞ.
For low temperatures and impurity concentrations, only
low-momentum states are populated and the peak position

of the rf spectrum corresponds to the polaron binding
energy [10].
Figure 1(a) shows the evolution with temperature of the

rf spectra. Here, we have defined the normalized transfer
IðωÞ ¼ ½NfðωÞ=N↓�ðEF↑=ℏΩ2

RTpulseÞ, with the number of
particles in the final (initial) state Nf (N↓), the pulse
duration Tpulse, and the single particle Rabi frequency ΩR.
The term Ω2

RTpulse originates from the linear response to
the rf pulse. The factor EF↑=ℏ in I is owed to the scale
invariance of the unitary Fermi gas, which implies that its
spectral features, such as the peak position, amplitude, and
width directly scale with the Fermi energy [31,32]. The
normalized transfer only depends on the dimensionless
parameters T=TF↑, n↓=n↑, and ℏω=EF↑, apart from small
corrections due to final state interactions and Fourier
broadening that break the scale invariance of the system.
The energy of the gas is measured by an isoenergetic
release from the uniform to a harmonic trap. After thermal-
ization, the in-trap size reveals the energy, from which we
obtain the temperature via the equation of state (see
Supplemental Material [33] ].
In the deeply degenerate limit ðT=TF↑ < 0.1Þ, we

observe a sharply defined resonance [Fig. 1(a)] signaling
the stable long-lived Fermi polaron [10]. Its width, defined
by the full width at half maximum (FWHM), is limited by
the Fourier resolution. From the position of the spectral
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FIG. 1. (a) Thermal evolution of the minority rf spectra. The impurity concentration is n↓=n↑ ¼ 0.10� 0.03, the Rabi frequency
ΩR ¼ 2π × 0.5 kHz, and the pulse duration Tpulse ¼ 1 ms. (b) 2D plot of the minority spectra with maxima highlighted by white points.
To reflect the energy of the initial many-body state, the spectra are shown with the inverse frequency E−=EF↑, where E− ¼ −ℏω. The
cross corresponds to the theoretical zero temperature result for the polaron energy, including a correction for final state interactions
[3–5,8,38]. (c) FWHM of the rf spectra. (Dotted line) Fourier resolution limit; (dashed red line) single-polaron decay rate Γ=EF↑ ¼
2.71ðT=TF↑Þ2 [7], offset by the Fourier limit; (dash-dotted black line) FWHM of the rf spectrum in the high-temperature limit
Γ=EF↑ ¼ 1.2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TF↑=T

p
[40,41], reflecting the scattering rate in the classical, unitary Boltzmann gas. [For the errors in (b) and (c), see the

Supplemental Material [33] ].
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peak at low temperature [Fig. 1(b)] and correction for weak
final state interactions as in [10], we obtain a zero temper-
ature polaron binding energy A≡ ϵ0=EF↑ ¼ −0.60� 0.05,
with a linear extrapolation of the peak positions below
T=TF↑ ¼ 0.3.
With increasing temperature, the spectral peak initially

shifts to higher frequencies and broadens significantly
[Figs. 1(b) and 1(c)]. A rise in the polaron binding energy
with temperature is expected, given the increased scattering
phase space of the majority spins, and is found theoretically
[42,43]. However, note that the position of the maximum at
finite temperature and impurity concentration is influenced
by the density of states, the difference in the effective
mass between initial and final state [20], and the thermal
population of momentum states. At a temperature near
T=TF↑ ≈ 0.75, a sharp jump in the position of the global
maximum to ω ≈ 0 is observed [Figs. 1(a) and 1(b)] [44]. In
this regime, the width of the spectra reaches its maximum
[Fig. 1(c)], on the order of the Fermi energy. Beyond this
temperature, the position of the maximum remains constant
at ω ≈ 0, as expected theoretically [40,41]. It reflects a
merging of attractive and repulsive branches, symmetric
about zero on resonance [45], as the temperature exceeds
their splitting.
The spectral function of a Fermi liquid is a single

Lorentzian peak with a width given by the decay rate of
the quasiparticles [1]. The width of the rf spectra is
dominated by this decay rate at low temperatures. We
observe a quadratic scaling of the width at low temper-
atures, a hallmark of Fermi liquid theory, in agreement with
a theoretical calculation [Fig. 1(c)] [7]. In the quantum
critical regime around T ≈ TF↑, the lifetime of the polarons
drops below the Fermi time (h=EF↑), signaling a break-
down of quasiparticles [15–17]. The decrease in width at
temperatures beyond the Fermi temperature is expected for
a classical Boltzmann gas with unitarity limited inter-
actions. The thermal scattering rate in the dilute impurity
limit is given by Γth ¼ n↑σthvth ∼ 1=

ffiffiffiffi
T

p
, with the thermal

velocity vth ∼
ffiffiffiffi
T

p
and the unitarity limited scattering cross

section σth ∼ λ2 ∼ 1=T.
Apart from energies and lifetimes, rf spectra also directly

yield the strength of short-range correlations, quantified by
contact C [Fig 2(a)] [24–27,31,46,47]. The contact is a
central quantity in a set of universal relations, linking
microscopic properties to thermodynamics, which apply to
all many-body systems with contact interactions [23]. It
governs the tail of the momentum distribution, short-range
pair correlations, and the change in energy with interaction
strength [27,31,32]. As the contact is a measure of pair
correlations, the tails of the rf spectrum of the minority and
majority components are identical. For unitarity limited
interactions, the fraction of transferred atoms in the high-
frequency limit is given by [27]

IðωÞ ¼
ω→∞

C
2N↓kF↑

1

2
ffiffiffi
2

p
πð1þ ℏω=EbÞ

�
EF↑

ℏω

�
3=2

; ð1Þ

where Eb ¼ ℏ2=ma2↑f ≈ h × 433 kHz. The inset of
Fig. 2(a) shows the corresponding fit of the tails with
Eq. (1), leaving only the contact as a free parameter.
The temperature dependence of the contact displays a

nonmonotonic behavior with a maximum located around
T ≈ 0.4TF↑ [Fig. 2(b)]. The observed initial rise in temper-
ature is partially expected from the increase in scattering
phase space and has also been found theoretically in a spin-
imbalanced few-body calculation of the contact [50]. In the
high-temperature limit, the contact is proportional to the
scattering cross section and vanishes as 1=T.
The contact quantifies short-range correlations. However,

the polaron is an extended object with pair correlations
extending out over distances even beyond the majority
interparticle spacing [51]. We thus set out to probe the entire
cloud of excessmajority atoms surrounding the impurity spin
of density Δn↑ ¼ n↑ðμ↑; μ↓; TÞ − n0ðμ↑; TÞ by in situ
density measurements [Fig. 3(a)]. Here, n↑ðμ↑; μ↓; TÞ is
the actual measured density of the interacting majority
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FIG. 2. Contact of the spin-imbalanced Fermi gas. (a) Typical rf
spectra of the spin minority (blue circles) and majority (red
squares). The impurity concentration is 10%. (Inset) High-
frequency tails of the minority and majority spectra together
with a fit of Eq. (1). (b) Contact as a function of temperature,
obtained by measuring the transferred fraction of atoms as a
function of rf pulse duration for frequencies ℏω=EF↑ > 5.5 and
use of Eq. (1). The gray dashed line shows the third-order viral
expansion [48] and the cross shows the result from the Chevy
ansatz [3,49].
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component and n0ðμ↑; TÞ corresponds to the density of a
noninteracting gas with the same temperature and majority
chemical potential. For this measurement, we use a hybrid
trapping potential that is harmonic along one direction and
uniform along the other two axes [21]. This trapping
geometry gives direct access to the density of each
spin component as a function of the trapping potential U
[Fig. 3(a)]. Under the local density approximation, the
knowledge of n↑;↓ðUÞ can be used to extract a variety of
thermodynamic quantities [12,13,30,33]. The majority
chemical potential and temperature are obtained from the
low-fugacity wings of the gas. In the case of a partially spin
polarized wing, we use the third-order virial expansion [48],
whereas for a fully spin polarized wing, we use the ideal
equation of state. For the lowest temperatures, the excess
majority density per minority atom is Δn↑=n↓ ¼ 0.63ð5Þ
[Fig. 3(b)]. For increasing temperature, the excess density
drops until it reaches the value predicted by the virial
expansion for the density. Δn↑=n↓ displays no dependency

on the minority concentration within our error up to
n↓=n↑ ¼ 0.3.
To elucidate the origin of the excess density from

thermodynamics, we model the total pressure of the
system as

Pðμ↑; μ↓; TÞ ¼ P0ðμ↑; TÞ þ
�
m�

m

�3
2

P0ðμ↓ − Aμ↑; TÞ: ð2Þ

Here, P0ðμ; TÞ is the pressure of the noninteracting Fermi
gas. The ansatz describes the total pressure of the system as
the sum of the partial pressure of the noninteracting
majority component and the partial pressure of an ensemble
of polarons with an effective chemical potential of μ↓ −
Aμ↑ and an effective mass m� [12,13]. It contains weak
interactions among the polarons that amount to a few
percent of the total energy of the system [52]. From this
pressure ansatz, the density can be calculated with the
Gibbs-Duhem equation at constant temperature and scat-
tering length ðdP ¼ n↑dμ↑ þ n↓dμ↓Þ,

n↑ðμ↑; μ↓; TÞ ¼ n0ðμ↑; TÞ − An↓ðμ↑; μ↓; TÞ;
n↓ðμ↑; μ↓; TÞ ¼ ðm�=mÞ32n0ðμ↓ − Aμ↑; TÞ; ð3Þ

where n0ðμ; TÞ≡ ∂P0=∂μ is the density of the noninter-
acting gas. Each minority is accumulating on average jAj ¼
0.6 excess majority atoms over the noninteracting limit, in
agreement with our measured value [Fig. 3(b)].
Since the Fermi liquid ansatz describes the thermodynam-

ics accurately in the low-temperature regime T=TF↑ < 0.2,
we now focus on this temperature regime and utilize the
ansatz to determine the effective mass of the polarons from a
measurement of the minority compressibility. In analogy to
the total compressibility of the gas, the normalized isothermal
minority compressibility is defined as κ̃↓ ≡ −dEF↓=dUeff

[30]. Here, Ueff ¼ ð1 − AÞU is the effective potential of the
minority component generated by the interaction with the
majority component [4,11]. Using Eq. (3) for the minority
density, one finds

κ̃↓ðT=TF↓Þ ¼
m�

m

κ0ðT; TF↓m�=mÞ
κ0ð0; TF↓m�=mÞ ; ð4Þ

where κ0ðT; TF↓Þ≡ n−20 ð∂n0=∂μÞT is the compressibility of
the noninteracting Fermi gas at fixed density. Figure 4 shows
the measured isothermal compressibility of the minority
component. A fit of Eq. (4) fixing A ¼ −0.615 [8] results
in an effective mass of m�=m ¼ 1.25ð5Þ, which is in agree-
ment with results obtained from diagrammatic Monte Carlo
simulations [8], a variational ansatz [5], and previous low-
temperature experiments [11–13]. The saturation of the
minority compressibility at low temperatures signals the
formation of a degenerate Fermi sea of polarons.

(a)

(b)

FIG. 3. Observation of the majority excess cloud. (a) Density
profiles in a harmonically varying external potentialU. Blue (red)
data points indicate the profiles of the minority (majority) spin
component. The normalized temperature of the gas is T=TF↑ ¼
0.07 in the trap center (U ¼ 0). The green dashed line represents
the equation of state of the ideal Fermi gas, the red (blue) solid
line is the Fermi liquid ansatz [Eq. (3)] for the majority (minority)
component. The red shaded area displays the excess majority
density Δn↑. (Inset) Dependence of the excess majority to
minority ratio on the impurity concentration. (b) Temperature
dependence of the majority excess cloud. Data points show the
excess majority density Δn↑ for an impurity concentration of
n↓=n↑ ¼ 0.1 (squares), n↓=n↑ ¼ 0.2 (triangles), and n↓=n↑ ¼
0.3 (circles). The cross indicates the low-temperature prediction
of the Fermi liquid ansatz Δn↑=n↓ ¼ −A ¼ 0.615 [8] and the
dashed line shows the third-order virial expansion.
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In conclusion, we have studied the temperature depend-
ence of a highly spin-imbalanced unitary Fermi gas with rf
spectroscopy and in-trap density profiles. When the major-
ity component is degenerate ðT=TF↑ ≪ 1Þ, long-lived
quasiparticles emerge. In the spirit of Fermi liquid theory,
these polarons behave like a weakly interacting Fermi gas
forming a sharp Fermi sea for T=TF↓ ≪ 1. The weakly
interacting character of the quasiparticles is also reflected in
the independence of the majority dressing cloud on the
impurity concentration. In the opposing high-temperature
regime, the gas is accurately described as a classical
Boltzmann gas. At intermediate temperatures (T ≈ TF↑)
the quasiparticle description breaks down. The spectral
features of the attractive polarons dissolve, merging with
excited branches, such as dressed dimerons [8,49,53] and
repulsive polarons [18–20,38,53,54].
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