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We show that in-plane magnetic-field-assisted spectroscopy allows extraction of the in-plane orientation
and full 3D size parameters of the quantum mechanical orbitals of a single electron GaAs lateral quantum
dot with subnanometer precision. The method is based on measuring the orbital energies in a magnetic field
with various strengths and orientations in the plane of the 2D electron gas. From such data, we deduce the
microscopic confinement potential landscape and quantify the degree by which it differs from a harmonic
oscillator potential. The spectroscopy is used to validate shape manipulation with gate voltages, agreeing
with expectations from the gate layout. Our measurements demonstrate a versatile tool for quantum dots
with one dominant axis of strong confinement.
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A spin in a magnetic field is one of the simplest
canonical quantum two-level systems encoding a qubit
[1]. To realize spin-based quantum computing, the capabil-
ity of addressing individual spin qubits is essential, as
demonstrated in various semiconductor quantum dot devi-
ces [2]. Although significant progress has been made on the
control of spin states, the challenge lies in the lack of means
to adjust the confinement potential, particularly for dot
systems formed in nanowires or by intrinsic defects. Lateral
quantum dots, on the other hand, show excellent flexibility.
Defined in a 2D electron gas (2DEG) by nanometer-scale
surface gates, they allow, in principle, arbitrary and tunable
dot shapes [3].
This tunability is important for spin manipulations.

Namely, the dot shape and the related orbital energy
spectrum are directly associated with a variety of spin-
electric related processes. These rely on mixing of spin and
orbital degrees of freedom since the orbital shape deter-
mines the dipole moments connected with spin-flip tran-
sitions. For instance, such mixing presents the predominant
channel for spin relaxation in GaAs, through both the spin-
orbit [3–5] and hyperfine interactions [6,7]. Both spin
relaxation [3] and spin manipulation by electric-dipole spin
resonance (EDSR) [8,9] show a strong dependence on the
dot shape and the orientation in the 2DEG plane and with
respect to the magnetic field. The dependence can be
exploited to control both the spin relaxation time and EDSR
frequency [10].
The bottleneck in taking full advantage of this flexibility is

that, so far, there is no direct method to adequately determine
the quantum dot confinement geometry. Many previous

experiments probed low-lying excited-state energies [3,6,
11,12]. However, there are characteristics of the confinement
that are difficult to disentangle from such measurements
(the potential anharmonicity), which are energetically not
accessible (the subband spacing) and which are not present
in such data at all (the dot orientation).
Looking for alternative ways to extract these character-

istics is full of obstacles, too: since the dot is imprinted into
the 2DEG beneath the surface of the device, details of the
dot shape are inaccessible for surface imaging tools, such as
atomic force or scanning tunneling microscopy. Also, the
electric fields from the surface gates will in return interfere
with the probe aggravating such measurements [13,14].
Further, these methods suffer from invasive backaction of
the probe to the sample disturbing the quantum dot. In
principle, nowadays, software is capable of advanced
simulations [11,15]. However, the reliable input to such
simulations is restricted to the design of the surface gates
and the chemical composition used during the wafer
growth. The details of the interfaces, strain distribution,
and, most importantly, impurities and donor positions are
unknown. At the moment, they can be at best guessed and
included into such simulations by hand. Formation of
unintentional dots, and dots with positions and shapes
differing from the one suggested by the gate layout, is more
a rule than an exception. Finally, the fact that the dot details
often change upon cooldown is proof that, even though
simulations can serve as a rough guide, they are unable to
provide sample-dependent details.
In this Letter, we present a noninvasive technique that

is able to extract the 3D shape and orientation parameters of
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the quantum mechanical orbitals of a quantum dot with
subnanometer precision. It is based on a response of the
energy spectrum to an in-plane magnetic field of varying
magnitude and direction. The theoretical principles of the
method are explained in Ref. [16]. Here, we demonstrate it
experimentally. While our quantitative interpretation of
the measurements is based on assuming an asymmetric
(triangular) 2DEG confinement and a harmonic in-plane
confinement, the method is directly applicable to any quasi-
two-dimensional system for which the unperturbed con-
finement can be reasonably guessed.
The surface gate layout of the measured device, shown in

Fig. 1(a), is based on Ref. [3]. The device is biased into
the single-electron quantum dot regime, as indicated by
the red ellipsoid. The dot is tuned to couple to the left
reservoir only, with a tunnel rate between 1 and 100 Hz. An
additional quantum dot, located directly adjacent to the
main dot, serves as a charge sensor [22,23], giving a change
of sensor conductance of up to 100% per electron in the
main dot. The sample can be oriented with an essentially
arbitrary angle with respect to an in-plane magnetic field up
to 14 T using a piezoelectric rotator. Using standard van der
Pauw measurements, the magnetic field is shown to deviate
less than 1.3° out of the 2DEG plane, thus rendering the
out-of-plane component negligible [6]. Measurements are
done in a dilution refrigerator with an electron temperature
of 60 mK [24–26].
The orbital energies are measured by pulsed-gate spec-

troscopy using a three-step pulse sequence. Namely, an
additional voltageΔVP is applied to the center plunger gate
(CP), on top of the static gate voltage VP [see Fig. 1(a)]
[3,27,28]. As illustrated in Fig. 1(b), the sequence consists
of initialization, charging, and readout steps (see also
Sec. V in the Supplemental Material [17]). The elastic
tunnel rate into the empty dot increases sharply when an
orbital state becomes resonant with the chemical potential μ
of the reservoir. By measuring the dot-reservoir tunnel
coupling for varying ΔVP, individual excited orbital states
can be distinguished. An example is shown in Fig. 1(c)
exhibiting three excited orbital states. The ground state,
which calibrates ΔVP ¼ 0, couples much weaker to the
reservoir (ΓGS ∼ 10 Hz) compared to the excited orbital
states, attributed to the increased spatial extent of higher
orbitals [29,30]. The exponential decay in the tunnel rate of
the excited states with increasing ΔVP [dashed curves in
Fig. 1(c)] is due to an increasing tunnel barrier [31–33].
Finally, we note that our method requires that the probe
voltage does not change the confinement potential. We
conclude that this assumption is well met, as the pulse ΔVP
is much smaller (typically, tens of millivolts, applied only
on one gate) than voltages required to change the dot shape
substantially (typically hundreds of millivolts, applied on
all gates), as deduced from Fig. 2(a).
We assume that the dot confinement separates into a 2D

harmonic oscillator part for the in-plane coordinates and a

much stronger confinement for the heterostructure growth
direction (ẑ) coordinate,

H ¼ p2

2m
þ ℏ2

2m

�
x2d
l4x

þ y2d
l4y

�
þ vðzÞ: ð1Þ

Here, p is the momentum operator, ℏ is the reduced Planck
constant, m is the effective mass, and lx;y are the confine-
ment lengths along the main axes x̂d and ŷd of the in-plane
confinement. These axes are, in general, rotated from the
crystal axes [100] and [010] by an angle δ [see Figs. 1(a)

FIG. 1. (a) Sketch with electron micrograph of the gate layout
of a cofabricated device shown on top. The gate left wall (LW),
right wall (RW), left plunger (LP), center plunger (CP), right
plunger (RP) and nose (N) form the quantum dot (QD). The
sensor quantum dot (SQD) is adjacent to the left. The
GaAs=Al0.3Ga0.7As heterostructure contains a 2DEG with den-
sity 2.6 × 1011 cm−2 and mobility 4 × 105 cm2=Vs located
110 nm below the surface. The in-plane field angle ϕ and wave
function orientation δ are defined with respect to [100], while
δ̃ ¼ δ − 225° is the angle between x̂ ¼ ½1̄ 1̄ 0� and x̂d, the dot
confinement x axis. (b) Three-step pulse sequence described in
the text. (c) Measurement of tunneling-in rate Γin as a function of
ΔVP exhibiting three excited orbital states at energies Ex, Ey, and
Ex;2. (d) Ground-state wave function (left) and the p-type orbitals
for an elongated dot with exaggerated anisotropy (details in Sec. I
of the Supplemental Material [17]).
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and 1(d)]. For simplicity, we introduce δ̃ ¼ δ − 225° as the
angle between potential axis x̂d and device axis x̂ ¼ ½1̄ 1̄ 0�.
In the model described by Eq. (1), the excitation energies
are Ex;y ¼ ℏ2=ml2x;y and the ground-state wave function can
be represented by a disklike ellipsoid. The two lowest
excited states correspond to p-like orbitals aligned along
two perpendicular axes x̂d, ŷd, as shown in Fig. 1(d).
Within this model, the parameters Ex, Ey, and δ

characterize the dot shape, and vice versa, control of these
parameters indicates dot-shape tunability. This is what we
demonstrate next. Applying appropriate voltages on the
surface gates, the dot can be elongated either in the x̂ or,
alternatively, the ŷ direction [3]. For instance, the dot can be
squeezed in the ŷ direction by applying more negative
voltages on the plunger gates LP,CP, and RP [see Fig. 1(a)].
To keep the ground-state energy constant, these changes are
compensated by applying less negative voltages on the other
gates LWand RW, which leads to an expansion of the wave
function in the x̂ direction. We introduce a shape parameter

Vshape to denote the full set of gate voltages corresponding to
a particular configuration (see Fig. 2), with the numerical
value of Vshape taken to be the voltage on gate CP.
The two lowest orbital excitation energies are shown in

Fig. 2(a) as a function of the dot shape Vshape. Upon making
Vshape more negative, thus squeezing the dot in the ŷ
direction, one of the two energies increases, thus identified
as the ŷ state. The other energy decreases and thus has to
be the x̂ state, as labeled in Fig. 2. Interestingly, at
Vshape ∼ −500 mV, we find Ex ≈ Ey, indicating a circular,
isotropic wave function in the 2D plane. Such shape
manipulation by gate voltages is limited, on one hand,
by the minimum voltage needed to deplete the 2DEG
underneath the surface gates and, on the other hand, by
the gate leakage threshold at more negative gate voltages.
We emphasize that, throughout the shape manipulation, the
tunneling rate to the reservoir is held approximately
constant. For each dot shape, the relevant lever arm is
measured, providing the gate voltage to energy conversion
in order to obtain the excited-state energies from pulsed-gate
spectroscopy (see Sec. IV in the Supplemental Material [17]
for details).
From such data, however, there is no estimate of the tilt

angle δ̃ or how it depends on Vshape—other than that it is
probably not too big. It is natural to expect that, as the dot is
being squeezed, the wave function is also shifted and
possibly somewhat rotated in space, depending on the
detailed potential and disorder landscape present. In addi-
tion, we note that the subband excitations Ez ≫ Ex;y are
energetically out of reach of this pulsed-gate spectroscopy
method, so that little can be said about the size of the dot
orbitals along the growth axis. We are now going to show
how this missing information can be revealed; this is the
main advance that our work makes.
To this end, we exploit the effects of a strong in-plane

magnetic field B applied along an in-plane direction b̂,
which makes an angle ϕ with the [100] crystallographic
axis [see coordinate system in Fig. 1(a)]. In Ref. [16], we
show that the leading order effect can be expressed as a
correction to Eq. (1) of the following form [35]:

δH ¼ −
Φ2

2m
½p · ðb̂ × ẑÞ�2: ð2Þ

This interaction is the basis for our spectroscopy. Its
strength scales with the magnetic flux Φ penetrating the
2DEG due to its finite width. Explicitly,

Φ ¼ e
ℏ
Bλ2z ; ð3Þ

where e > 0 is the elementary charge and λz is the effective
width of the wave function along the growth direction. We
analyze the connection between a nominal width and the
effective width of a 2DEG for several confinement pro-
files, namely, triangular, harmonic, and a square potential

FIG. 2. (a) Orbital excitation energies Ex (green) and Ey
(purple) as a function of Vshape. The schematics give a qualitative
picture of the excited orbital wave functions along the x̂ direction
(green) and ŷ direction (purple) for the three shapes indicated by
the arrows. Less exaggerated wave functions are shown in Sec. I
of the Supplemental Material [17]. Orbital excitation energies for
a magnetic field applied along the y direction for two extreme dot
shapes elongated (b) along x̂ and (c) along ŷ, for Vshape as labeled.
The data are fitted to Eq. (4), giving λz ¼ 6.3� 0.3 nm and Ez ¼
28.6� 3 meV [34].
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well [16]. Also, we note that flux threading was previously
studied in open dots [36–38].
For typical 2DEGs and magnetic fields, the flux is small:

Φ ≪ 1 [34]. Treating Eq. (2) as a perturbation to Eq. (1),
the energies change by

δEx;y ¼ −
Φ2

2

ℏ2

ml2x;y
sin2ðδx;y − ϕÞ: ð4Þ

Here, we denoted δx;y as the corresponding excited orbital
directions (with respect to [100]). They follow from Eq. (1)
as δx ¼ δ and δy ¼ δþ π=2.
First, we apply a strong magnetic field along the y

direction for the two most elongated shapes available [see
Figs. 2(b) and 2(c)]. For sufficiently weak confinement
along one direction, a second excited state Ex;2 or Ey;2

also becomes accessible. While Ex;2 ∼ 2Ex for the dot in
Fig. 2(b), Ey;2 is slightly lower in energy than the second
harmonic of Ey, as seen in Fig. 2(c). For this configuration,
the voltage on the nose N and all plunger gates are only
barely sufficient to deplete the 2DEG, which could lead to
a softening of the confinement potential along ŷ. Looking
at the field dependence, we make the striking observation
that Ey remains constant for both shapes, while Ex clearly
changes with magnetic field. This is consistent with the
notion that the orbital effects of a magnetic field are given
by a Lorentz force, which is a vector product of the velocity
with the field, thus leaving motion along the direction of the
applied field unaffected. This agrees with the prediction of
Eq. (2), giving that x̂d ≈ x̂, meaning that the dot is oriented
along the device axes. The invariance of Ey indicates that
the corresponding orbital is rather well aligned with the
magnetic field and therefore the y axis of the device.
Comparing the two cases in Fig. 2, we emphasize that,
going from Fig. 2(b) to 2(c), the quantum dot was in fact
rotated by 90°, thus demonstrating a gate-induced quantum
dot rotation. Indeed, this is expected from the gate voltage
dependence Vshape and is here validated in real space with
the in-plane field spectroscopy.
By fitting the data to Eqs. (3) and (4), we can extract the

effective width λz and thus the size of the quantum dot
along the growth direction. We can convert the latter, under
a rather mild assumption that the heterostructure confine-
ment is triangular, to the interface electric field Eext and
the subband energy splitting Ez. This in turn allows for
the evaluation of the spin-orbit fields. Namely, from λz ¼
6.3� 0.3 nm, we get the spin-orbit lengths lr ¼ 2.1�
0.3 μm and ld ¼ 3.2� 0.3 μm for the Rashba and
Dresselhaus interaction, respectively [39]. Using an inde-
pendent fit from the directional variation of the spin-
relaxation time [6] gave lr ¼ 2.5� 0.2 μm and ld ¼ 4.1�
0.4 μm illustrating the agreement. We point out that, apart
from determining the spin-orbit interactions strengths, the
width of the 2DEG determines also the strength the electron
Fermi contact interaction with nuclear spins. Thus,

knowledge on the quantum dot size along the growth
direction is essential for quantitative analysis of spin
properties, such as relaxation [6].
We now turn to a precise quantification of the dot

orientation. It can be done by measuring the excitation
energies at a magnetic field with fixed magnitude and varied
orientation. Figure 3 presents such data for B ¼ 8 T and a
more symmetric dot. The energies show a sinusoidal behav-
ior as expected from Eq. (4). The two states oscillate out
of phase, proving that they represent orbitals oriented
perpendicular to each other (see also Sec. III in the
Supplemental Material [17]). For an elongated (quasi-1D)
dot, the states would oscillate in phase [16]. Beyond
confirming that our dot is indeed close to a symmetric
one,we can specify its orientation in detail. By fitting the data
of Fig. 3 to Eqs. (1) and (2), we obtain δ̃ ¼ −8°� 4°,
indicating the dot is slightly tilted away from the device
coordinate system.We note that even such modest misalign-
ment can have a large impact on the qubit quality [10] and on
characterization of the spin-orbit fields [4].
Before concluding, we look at the assumption that the

in-plane confinement is a quadratic function of coordinates,
adopted in Eq. (1). It has been used from the onset of
quantum dot investigations [11] as a practical choice for
which analytical solutions are known [41–43]. Compared
to its prevalent use, the evidence on such confinement
shape is less abundant and has, until now, been restricted to
checking the equidistant energy spacing of excited states of
a harmonic oscillator. The data in Fig. 3 can provide
additional information. Namely, fitting each of the acces-
sible orbitals to Eq. (4) individually, we can extract the x, y
orbital-specific angle δx;y. In principle, one can map out the

FIG. 3. Spin-resolved excitation energies measured at the
magnetic field of a fixed magnitude 8 T and varying direction
in an almost circular quantum dot (Vshape ∼ −550 mV in Fig. 2).
The solid curves show a fit according to Eq. (4) for each orbital
state (separately for the green and purple data) assuming a
direction-independent Zeeman energy. Since the g factor
anisotropy is small [40], this is a very good approximation.
The fit gives δ̃x¼−8°�4°, δ̃y ¼ 62°� 4°, and λz ¼ 6.1� 0.3 nm
(Ez ¼ 30.7� 3 meV) [34].
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dependence of δ on the single-particle state energy, if more
excited states are accessible. Here, we find δy−δx≈70�8°.
It is different from 90°, a value for a purely quadratic
potential, and here we have quantified by how much.
In summary, we measure excitation energies in a single-

electron lateral quantum dot with in-plane magnetic fields
of varying orientation. We show that such measurement
can determine the orientation of the dot and extract its
single-particle quantum mechanical confinement parame-
ters. In particular, this means that, for a given orbital, one
can assign a size and orientation within the 2DEG plane, as
well as its extension along the growth direction with
subnanometer resolution. The information on the quantum
dot shape has an immediate use in correct quantification of
the spin-orbit fields, as well as the strength of the electron-
nuclear Fermi contact hyperfine interaction. We note that
the method is directly applicable to any quasi-2D dot, also
in other materials and more sophisticated structures, for
example, triple quantum dot devices with noncollinear
arrangement, as well as dots with higher electron occupa-
tions, where Hartree-Fock orbitals could be accessed in the
same way.
The data that support the findings of this study are

available in a Zenodo repository [44].
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