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Quantum and classical physics can be used for mathematical computations that are hard to tackle by
conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the
minima of spin Hamiltonians, paving the way to new ultrafast hardware for machine learning. However, the
proposed systems are either tricky to scale or involve a limited number of spins. We design and
experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light
modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light
propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude
modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the
ground state in a low-temperature ferromagneticlike phase with all-to-all and tunable pairwise interactions.
Our results open the route to classical and quantum photonic Ising machines that exploit light spatial
degrees of freedom for parallel processing of a vast number of spins with programmable couplings.

DOI: 10.1103/PhysRevLett.122.213902

A large number of internal states characterize complex
systems from biology to social science. The fact that the
number of these states grows exponentially with the system
size hampers large-scale computational possibilities.
Complex optimization problems involving these models
are in many cases classified as nondeterministic polynomial
(NP) hard and cannot be tackled efficiently by standard
computing architectures. A broad class of such computa-
tionally intractable problems maps to the search of the
ground state of a classical system of interacting spins: the
minimization of an Ising Hamiltonian with specific spin
couplings [1–3].
Growing research interest is emerging towards physical

and artificial systems that evolve according to an Ising
Hamiltonian and enable us to find the optimal combinatorial
solution by the ground state observed in the experiment.
Quantum and classical Ising systems have been realized by
trapped atoms [4,5], single photons [6], superconducting
circuits [7], electromechanical modes [8], nanomagnets [9]
and polariton condensates [10]. In optics, spin-glass dynam-
ics have been observed in random lasers [11,12], multimodal
cavities [13,14], coupled laser lattices [15], beam filamenta-
tion [16], and nonlinear wave propagation in disordered
media [17]. These photonic systems host thousands of
optical spins, but the spin variables are not easy to access,
and controlling their interaction is challenging.
Novel photonic platforms with numerous and easily

accessible spins are particularly relevant for computation.
Optical computing machines offer high-speed and paralle-
lization. Various authors reported coherent Ising machines
based on time-multiplexed optical parametric oscillators
finding approximate solutions to optimization problems

with several nodes [18–24]. Others proposed nanophotonic
circuits to implement any small-scale spin systems directly
on a programmable chip [25–27].Matrix operations can also
be performed by spatially shaped optical fields, without
engineered wave-mixing devices [28,29], by exploiting
randomly reflected waves [30] or disordered biological
samples [31]. However, using spatial optical modulation
to solve Ising spin dynamics has remained unexplored.
In this Letter, we propose and experimentally demon-

strate the use of spatial light modulation for calculating the
ground state of an Ising Hamiltonian. The phase matrix on a
spatial light modulator (SLM) acts as a lattice of spins for
which the interaction is ruled by the constrained optical
intensity in the far field and can be programmed by input
amplitude modulation. Feedback from the detection plane
allows the spatial phase distribution to evolve towards the
minimum of the selected spin model. We find ferromag-
neticlike ground states in agreement with mean-field
predictions. Our spatial Ising machine hosts thousands
of parallelly processed spins, and it represents a scalable
and efficient approach for photonic computing.
We implement a spatial photonic Ising machine by using

the phases in separated spatial points of the optical wave
front. A binary phase-modulated beam encodes binary
spins with configurable interactions [Fig. 1(a)]. A spin
variable σj ¼ expð{ϕjÞ ¼ �1 corresponds to a spatial point
of the optical field with phase ϕj ∈ f0; πg. As illustrated
in Figs. 1(b) and 1(c), a SLM acting as a reprogrammable
matrix of pixels imprints binary phase values on the
coherent wave front. Setting the SLM in the Fourier space
of the electric field ẼðkÞ, we have
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ẼðkÞ ¼
X

j

ξjσjδ̃Wðk − kjÞ; ð1Þ

where ξj indicates the field amplitude incoming on each
pixel. The normalized rectangular function δ̃W models the
pixel of finite size 2W [Fig. 1(c)] so that kj ¼ 2Wj, with
j ¼ 1;…; n. The resulting far-field intensity after free-
space propagation is

IðxÞ ¼ jEðxÞj2 ¼
X

jh

ξjξhσjσhδ
2
WðxÞe2{Wðh−jÞx; ð2Þ

with δWðxÞ ¼ sinðWxÞ=ðWxÞ as the inverse Fourier trans-
form of δ̃WðkÞ. A spin-spin interaction can be induced by
acting on the intensity on the detection plane. We constrain
IðxÞ by a measurement and feedback method to couple the
phases on the SLM plane. Minimizing kITðxÞ − IðxÞk for
an arbitrary target intensity image ITðxÞ thus corresponds
to minimizing a Hamiltonian H. After normalization,R ½ITðxÞ�2dx ≃

R ½IðxÞ�2dx, and the function H takes the
form of the Ising Hamiltonian

H ¼ −
X

jh

Jjhσjσh; ð3Þ

with spin interactions given by

Jjh ¼ 2ξjξh

Z
ITðxÞδ2WðxÞe2{Wðh−jÞxdx: ð4Þ

When the effect of the SLM pixel size can be neglected,
δWðxÞ ∼ 1, and the couplings reduce to

Jjh ¼ 2πξjξhĨT ½2Wðj − hÞ�; ð5Þ

which indicates that the interaction matrix is set by the
input amplitude modulation along with the Fourier trans-
form of the far-field target image. The interaction passes
from short to long range by changing the spatial profile of
IT . In particular, in the case of a pointlike target image, the
spins are all-to-all interacting (Jjh ¼ const) for an input
wave with constant amplitude. Using a programmable
(quenched) amplitude mask on the input beam, the cou-
plings can be varied according to Jjh ∝ ξjξh, which allows
us to implement the entire class of spin-glass models,
known as Mattis models [32,33], where the pairwise
interaction can be expressed as a product of two indepen-
dent variables. Figure 1(c) shows the principle of operation
of our Ising machine. A spin configuration fσjg is
generated upon an amplitude-modulated wave front using
binary phases on the SLM, and the corresponding intensity
distribution IðxÞ is measured in the far field. The detected
image is compared with the target ITðxÞ and the informa-
tion is feedback to the SLM plane. The system evolves
towards minimization of the cost function f ¼ jjITðxÞ−
IðxÞjj, which corresponds to the Ising ground state.
The experimental optical machine follows the setting

shown in Fig. 1(b). Light from a continuous-wave laser
source with a wavelength of λ ¼ 532 nm is expanded,
eventually modulated in amplitude, and impinges on a
nematic liquid crystal reflective modulator (Holoeye LC-R
720, 1280 × 768 pixels, with pixel pitch of 20 × 20 μm) for
which the active area is selected by a rectangular aperture to
host N ¼ L × L spins (in pixels). The SLM is set into a
phase-modulation mode with less than 10% residual
intensity modulation by a combination of incident and
analyzed polarizations. Phase-modulated light is spatially
filtered (3 mW of power) and then focused by a lens
(f ¼ 500 mm) on a CCD camera. The intensity is mea-
sured onM ¼ 18 × 18 spatial modes obtained by grouping
16 × 16 camera pixels to average over speckles arising
from spatial phase fluctuations in the far-field plane.
We first demonstrate the spatial Ising machine for N ¼

4 × 104 spins with all-to-all couplings (Jjh ¼ const), which
corresponds to a number of spin-spin connections that
are orders of magnitude larger than those realized in
time-multiplexed platforms [19,20]. In this case, ξj ¼ ξh ¼
ξ0 and the target corresponds to intensity focused only
in a single spatial mode: a bright localized spot
[Fig. 2(a)]. The binary phases on the SLM are initialized

(a)

(b)

(c)

FIG. 1. Ising machine by spatial light modulation. (a) The wave
phase in different spatial points gives the spins evolving through
optical propagation. (b) An amplitude-modulated laser beam is
phase modulated by a reflective SLM and detected by a CCD
camera in the far field. (c) A discrete phase mask with binary
values ϕj ¼ 0; π in the Fourier plane mimics Ising spins σj ¼ �1.
Inset is an example of the detected intensity when the binary
hologram is tailored to generate a squared intensity target IT .
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by a random distribution, which gives a weak and broad
speckle pattern in the detection plane. By a Monte-Carlo-
like method, at each iteration, we randomly flip a small
cluster of spins and measure the corresponding far-field
intensity, retaining the change only if its difference with the
target image decreases [34]. Unlike other photonic Ising
machines [23], no information about the target Hamiltonian
is used to electronically affect the spin evolution. To
prevent trapping into local minima induced by the algo-
rithm, we select clusters with a gradually increasing size.
To follow the system evolution, we consider as physical
observables the energy H and the magnetization m ¼ hσji
of each configuration. As shown in Fig. 2(b) for different
realizations, we observe a monotonic growth of jmj, which
saturates to a large value after approximatively 103 iter-
ations. The Hamiltonian monotonically decreases toward a
plateau, thus indicating the onset of a low-energy ferro-
magneticlike state. The actual temperature T of these spin
configurations is determined by the random phase fluctua-
tions in the Fourier plane, which results from the intrinsic
noise characterizing each operation in the experimental
setup. Sources of noise come from the quantization on the
CCD discrete modes of the detected intensity, as well as
from the imperfect spatial phase modulation [35].
To test the solution found by our machine, we use a

different approach based on phase retrieval. The aim is to
evaluate the energy probability distribution function (PDF)

of all those fσjg that satisfy the far-field constraint and
compare with the low-energy solutions found by the
machine. We use a quantized phase-retrieval (QPR) algo-
rithm [36] to generate binary phase distributions from the
target image IT and measure the far-field intensity I.
Among the many QPR states, which are associated with
different phase patterns in the target plane, the solution
of the machine is determined by minimizing the cost
function f. Figures 2(c) and 2(d) show the results from
16 sets of measurements, each with 100 phase-retrieved
spin configurations. The identified solutions populate the
tail of the energy distribution [Fig. 2(c)] and have maxi-
mum magnetization [Fig. 2(d)]. This indicates that ground
states of the Ising Hamiltonian are successfully found. In
particular, the machine gives, with 87% probability, the
correct minimum solution: that is, a spin configuration
lying in 5% of those with the lowest energy. This ground-
state probability quantifies the correspondence between the
cost-function minima and spin states with lower energy,
and it is independent of the way the ground state has
been found.
To quantify the physical state resulting from the

optical computation, we analyze the spin configurations.
Figure 2(e) shows the typical ground states retrieved by the
optical machine. We observe ferromagnetic domains of
various size embedded in a phase with opposite magneti-
zation. Spin states with m < 0 and m > 0 appear with

(a)

(c) (d) 1

-1

(b) (e)

FIG. 2. Optically solving the Ising Hamiltonian with all-to-all spin interactions. (a) Unweighted Möbius-Ladder graph with fully
connected vertices (results refer to N ¼ 4 × 104) along with the target intensity IT. (b) Measured evolution of H (Jjh ¼ 1) and jmj for
different initial random spin matrices. (c),(d) Observed probability distribution for the (c) energy and (d) magnetization of spin
configurations satisfying the interaction constraint IT ; red and magenta lines indicate H and jmj of the identified ground-state solutions,
respectively. (e) Set of ground-state spin configurations: small-size ferromagnetic clusters with opposite magnetization are visible.
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almost equal probability, as expected from spontaneous
symmetry breaking in the absence of external magnetic
fields. From the set of fσjg, we estimate the actual
temperature according to the mean-field solution of
Eq. (3), which describes the case with all-to-all interacting
spins [33,37]. Considering the equation of state
m ¼ tanh ½ðTc=TÞm�, from the observed mean magnetiza-
tion, we obtain T=Tc ¼ 0.80� 0.03. We also analyze the
measured spin spatial autocorrelation according to
gðrÞ ¼ exp ð−r=ξÞ, where the autocorrelation length ξ
estimates the mean domain size. In the mean-field
approach, ξ diverges at the critical temperature as
ξ ¼ R�ð1 − T=TcÞ−β, where the critical exponent is β ¼
1=2 and R� is the minimum cluster length. The resulting
temperature is T=Tc ¼ 0.83� 0.02. Therefore, the
observed ground states have magnetizations and domain
configurations consistent with a mean-field Ising model at
fixed temperature.

One of the main features of our spatial photonic setting is
the extremely large number of spins that can be simulated.
Varying the active area on the SLM (the transverse size of the
spatially modulated laser beam), we investigate how the
machine operation depends on the system size L. Figure 3(a)
shows the magnetization and the fidelity (probability of
finding the Ising ground state) of the observed ground
state by varying the number of spins from N ¼ 74 × 74
to N ¼ 274 × 274 and leaving their interaction unchanged.
At variance with other photonic settings [19], we find that
the performance of our Ising machine does not sensibly
depend on the number of spins [inset in Fig. 3(a)]. For large
sizesN, a minor decrease of the magnetization and fidelity is
observed, and it is due to the lower spatial resolution in the
detection plane. At a low spin number, we observe a linear
decrease of jmj as N is reduced. We ascribe this behavior to
finite-size effects. The observed spin autocorrelation func-
tion strongly varies with the number of spins, and a well-
defined single decay only emerges at large N [Fig. 3(b)].
For configurations with few spins, we find that the measured
correlation length grows linearly with the configuration size
[Fig. 3(c)], which is in agreement with finite-size scaling
arguments, which predict a mean-field behavior of ξ ∝ L
[38]. For large L, the size of the ferroelectric domains
becomes independent of the system scale. The photonic
machine thus points out a fundamental phenomenon of spin
models [39].
We investigate other Ising models by tailoring the spin

couplings. As suggested by Eq. (5), Mattis spin glasses
can be realized by varying the input amplitudes ξi and
keeping a pointlike target image (ĨT ½2Wði − jÞ� ≃ const).
For these experiments, the SLM is split into two independent
parts [40]. A portion of the SLM is used for amplitude

(a)

(b)

(c)

FIG. 3. Scaling properties of the ferromagnetic ground state.
(a) Observed magnetization varying the spin number. The inset
shows the scaling of the machine performance. (b) Spatial spin
autocorrelation functions (distance in pixel units) for different N.
(c) Autocorrelation length as a function of the system size L
(dots) and linear fitting behavior (line).

(a) (b)

FIG. 4. Programming the spin interaction by amplitude modu-
lation. (a) Examples of coupling configurations (N ¼ 104, top
panels) made of random blocks in which the interaction assumes
two positive values ðξj ¼ 0; ξ0 > 0Þ. The corresponding spin
ground state observed in the red box region is shown in the
bottom panel. (b) Measured probability distribution of the
correlation C between the ground state and the couplings for
the Mattis models. The inset shows a corresponding Möbius-
Ladder graph with connected and unconnected nodes.
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modulation to generate controlled ξi distributions that are
imaged pixel by pixel on the second portion, where binary
phase modulation and spin dynamics occur. We implement
coupling matrices Jjh ∝ ξjξh made of large random blocks
with strongly (ξj ¼ ξ0) and weakly (ξj ¼ 0) interacting
spins [Fig. 4(a)]. Following the theoretical solution of the
Mattis model [33], the expected spin ground state is identical
to the interaction configuration ξj or to its reversal, except for
the weakly interacting regions where spins are randomly
oriented. In our photonic simulation, we quantify the fidelity
of the measured inhomogeneous ferromagnetic ground state
by the spatial correlation C ¼ P

jσjξj=ξ0. C ¼ �1 for the
ideal Mattis model in the lowest energy state. Figure 4(b)
shows that the measured ground states are strongly corre-
lated or anticorrelated with the interaction matrix, as
expected. Because, in the Mattis models, a minimal amount
of noise introduces frustration [33], the differences between
the machine solutions and the ideal ones are due to the non-
zero effective temperature of the system.
In conclusion, we have demonstrated that spatial light

modulation can be exploited to find the ground state of
Ising Hamiltonians. By using binary phases on the wave
front of an amplitude-modulated laser beam and a
detection and feedback method, we optically calculate
the low-energy ferromagnetic spin configuration. The
ground states display finite-size scaling effects and
mean-field properties at a fixed temperature. This find-
ing opens the way to photonic simulations of phase-
transition phenomena. The platform naturally hosts tens
of thousands of spins (not limited to binary spins, when
adopting multilevel phase modulations) and is scalable
to larger sizes. The speed of our machine is limited only
by the SLM response, camera rate, and data processing.
The iteration time can be potentially reduced to a few
milliseconds with the most recent technologies [41].
Moreover, a recent theoretical proposal for optical circuits
[27] suggests a possible direction for further reducing the
steps performed digitally using wave-mixing devices. Our
method, employing fast and low-loss optical computation,
may also find application in alleviating energy-consuming
operations in electronics as large matrix multiplications
and Fourier transforms. Our approach can be extended to
light pulses modulated in space and time, even including
the quantum optical regimes in which the coherent
laser source is replaced by nonclassical light. Similar
large-scale simulators may also be conceived with quan-
tum wave packets as in ultracold gases, and Bose-Einstein
condensates, by proper control and preparation of the
initial states.
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