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We develop a formalism and a computational method to study polarons in insulators and semiconductors
from first principles. Unlike in standard calculations requiring large supercells, we solve a secular equation
involving phonons and electron-phonon matrix elements from density-functional perturbation theory, in a
spirit similar to the Bethe-Salpeter equation for excitons. We show that our approach describes seamlessly
large and small polarons, and we illustrate its capability by calculating wave functions, formation energies,
and spectral decomposition of polarons in LiF and Li2O2.
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Polarons have been attracting unrelenting attention ever
since the polaron concept was formulated by Landau a
century ago [1]. For example, polarons inspired the search
for high-temperature superconducting oxides [2]; they are
considered one of the hallmarks of emergent behavior in
quantum matter [3–7], and they have been linked to the
extraordinary defect tolerance of the new metal-halide
perovskites [8]. At a more fundamental level, the quest
for a satisfactory quantum-mechanical description of polar-
ons stimulated much progress in diverse areas of theoretical
physics. For example, the solution of the Fröhlich polaron
problem by Feynman was a landmark in the development
of the path integral formulation of quantum mechanics [9],
and the Pekar polaron problem [10] found applications in
general relativity [11] and quantum-state reduction [12].
In the simplest picture, a self-trapped polaron forms

when an excess electron or hole deforms a crystal lattice so
as to create a potential well from which it cannot escape.
Microscopic models of this effect have been developed and
investigated in many seminal contributions of the last
century [9,10,13–15], and subsequently refined to address
increasingly more realistic scenarios, such as multiple
electron bands, dispersive phonons, and transport proper-
ties [16–25]. More recently, significant progress in the
theory of polarons has been achieved with the development
of numerical many-body techniques, such as exact diag-
onalization [26], renormalization group [27,28], continu-
ous-time quantum Monte Carlo [29], and diagrammatic
Monte Carlo methods [30–32]. Comprehensive reviews of
the field can be found in Refs. [33–37].
The common denominator to most theoretical studies on

polarons is that they focus on idealized mathematical
models, for example, the Fröhlich Hamiltonian [13] and
the Holstein Hamiltonian [15], which describe a free or a
tightly bound electron interacting with a dispersionless
optical phonon, respectively. These models offer an ideal

test bed for methodological development and shape our
current understanding of polarons. However, they are not
suitable for studying real materials, as they lack essential
features such as complex unit cells, band structures,
phonon dispersion relations, and realistic electron-phonon
coupling matrix elements. Furthermore, such models are
not transferable to complex systems such as surfaces,
interfaces, low-dimensional materials, and heterostructures.
Therefore, there is a need for supplementing correlated
methods for polarons with more realistic materials param-
eters, as emphasized by authoritative reviews [34].
At the other end of the spectrum, ab initio calculations

based on density functional theory (DFT) are ideally
positioned to address the complexity of real materials.
Indeed, studies of polarons under realistic conditions have
begun to emerge during the past decade [38–45]. However,
also DFT faces important limitations: the calculations
necessitate large supercells [45–47]; hence, they are pro-
hibitive for intermediate and large polarons which require
several thousand atoms; local exchange-correlation func-
tionals tend to suppress polaron self-trapping; calculations
using Hubbard-corrected or hybrid functionals suffer from
the sensitivity to the Hubbard parameter or the exchange
fraction [45]. More fundamentally, the relation between
DFT calculations of polarons and the vast literature on
model Hamiltonians remains unclear.
In the present work, we wish to overcome these limi-

tations by filling the gap between model Hamiltonians and
atomistic calculations of polarons. To this aim, we refor-
mulate the direct calculation of polarons with DFT into a
nonlinear eigenvalue problem. The ingredients of this
formalism are the band structures, phonons, and electron-
phonon matrix elements calculated in the crystal unit cell
from density functional perturbation theory. The solution of
this eigenvalue problem yields the formation energy of the
polaron, its excitation energy, the electronic wave functions
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and atomic displacements, as well as the spectral decom-
position of the polaron in terms of the underlying
electron-phonon coupling mechanisms. We validate this
methodology by studying two limiting cases, the large
electron polaron in LiF and the small electron polaron in
Li2O2. Complete derivations and extensive benchmarks are
reported in the companion paper, Ref. [48].
We start by considering the DFT total energy of an

excess electron added to a crystal with a finite band gap.
The same reasoning holds for holes [48]. The ground state
is spin unpolarized, and we make the working assumption
that the perturbation to the valence Kohn-Sham (KS) states
due to the extra electron can be neglected (to be validated
a posteriori). By expanding the total energy in powers of
the atomic displacements from their equilibrium positions
in the ground state, at the lowest order which admits
nontrivial solutions we obtain

E¼
Z

drψ�Ĥ0
KSψ þ

Z
dr

∂V0
KS

∂τs jψ j2Δτs þ
1

2
C0
ss0ΔτsΔτs0 :

ð1Þ

Here the energy E is referred to the ground state, ψðrÞ is the
wave function of the excess electron, and Δτs are the
atomic displacements; s ¼ ðκαpÞ is a composite index
denoting the Cartesian coordinate α of atom κ in the unit
cell p, and the Einstein summation convention is implied.
The integrals are over a suitably large Born-von Kárman
supercell. Ĥ0

KS, ∂V0
KS=∂τs, and C0

ss0 represent the KS
Hamiltonian, the variation of the KS potential resulting
from an atomic displacement, and the matrix of interatomic
force constants, respectively. The superscript “0” indicates
that these quantities are evaluated in the ground state,
without excess electron. In Eq. (1), the spurious Hartree and
exchange-correlation interactions of the polaron with itself
and its periodic images are carefully eliminated via a self-
interaction correction, as discussed in Ref. [48].
The total energy E in Eq. (1) can be regarded as a

functional of ψ and Δτs. By minimizing this functional
subject to the constraint that ψ be normalized, we obtain the
nonlinear eigenvalue problem

Ĥ0
KSψ þ ∂V0

KS

∂τs ψΔτs ¼ εψ ; ð2Þ

Δτs ¼ −ðC0Þ−1ss0
Z

dr
∂V0

KS

∂τs0 jψ j2; ð3Þ

whereε is thepolaroneigenvalue. Inprinciple, theseequations
could be solved in real space, but in most practical applica-
tions this is prohibitive, since the supercell must be large
enough to accommodate the wave function ψ . To overcome
this obstacle, we proceed as in the calculation of excitons via
the Bethe-Salpeter equation [49,50], that is, we expand the

solution in terms of unperturbed KS states and phonons
eigenmodes. To this aim, we define ψ ¼ N−1=2

p
P

nkAnkψnk

andΔτs ¼ −2N−1
p
P

qνB
�
qνðℏ=2MκωqνÞ1=2eκα;qνeiq·Rp . Here

Np is the number of unit cells in the supercell, ψnk is an
unoccupied eigenstate of Ĥ0

KS for the band n andwave vector
k with energy εnk, and eκα;qν is the vibrational mode with
branch ν, wave vector q, and frequency ωqν, obtained by
diagonalizingC0

ss0 .Rp is a vector of the direct lattice, andMκ

is the mass of atom κ. Using these definitions in Eqs. (2) and
(3), we obtain a nonlinear eigenvalue problem for the
generalized Fourier amplitudes Ank and Bqν

2

Np

X
qmν

Bqνg�mnνðk;qÞAmkþq ¼ ðεnk − εÞAnk; ð4Þ

Bqν ¼
1

Np

X
mnk

A�
mkþq

gmnνðk;qÞ
ℏωqν

Ank; ð5Þ

where gmnνðk;qÞ is the electron-phonon matrix element
for the scattering between the electronic states jnki and
jmkþ qi via the phonon qν [51]. Equations (4) and (5) only
require the band structures, phonon dispersions, and matrix
elements calculated in the unit cell. In this representation, the
formation energyΔEf of the polaron, that is, the total energy
of the self-trappedpolaronminus theenergyof the undistorted
crystal with an extra electron at the conduction band bottom,
reads [48]

ΔEf ¼ 1

Np

X
nk

jAnkj2ðεnk − εCBMÞ −
1

Np

X
qν

jBqνj2ℏωqν;

ð6Þ

where the KS eigenvalue is referred to the conduction band
minimum. This expression shows that the polaron formation
energy consists of a positive-definite electronic contribution
and a negative-definite vibrational contribution. This spectral
representation allows us to identify jBqνj2 with the number of
phonons taking part in the polaron, as discussed in greater
detail in Ref. [48].
We now illustrate this approach using LiF and Li2O2 as

case studies. LiF is a simple salt that crystallizes in the
rocksalt structure. It is a paradigmatic wide gap polar
insulator and is known to host large electron polarons [52].
Li2O2 is a prototypical cathode for lithium-air batteries and
hosts small electron polarons [53]. The structure consists of
two-dimensional LiO2 layers intercalated by Li planes.
We perform calculations within the Perdew–Burke-
Ernzerhof generalized gradient approximation to DFT
[54], using plane waves and pseudopotentials as imple-
mented in the QuantumESPRESSO suite [55]. We employ
optimized norm-conserving Vanderbilt pseudopotentials
[56] and plane waves kinetic energy cutoffs of 150 and
105 Ry for LiF and Li2O2, respectively. We calculate
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phonons and electron-phonon matrix elements within
density functional perturbation theory [51,57], and we
perform Wannier interpolation of all properties using the
Wannier90 [58,59] and EPW [60,61] codes. We employ
uniform Brillouin-zone grids in Eqs. (4) and (5), and we
solve the linear system via a parallel steepest descent
algorithm. As the initial seed for Ank in Eq. (5), we use
a simple Gaussian line shape [48].
Figure 1 shows our results for LiF. In Fig. 1(a), we see

that the electron wave function of the polaron extends over
∼10 unit cells; therefore, we are in the presence of a large
polaron. A cross-sectional view in the [010] direction of the
same wave function is shown in Fig. 1(b). Here we
recognize an envelope function of approximately
Gaussian shape, which modulates the atomic Li and F
2s orbitals. From this plot, we can quantify the spatial
extent of the polaron using the full-width at half maximum,
2rp ¼ 9.0 Å. This value is consistent with an earlier
semiempirical estimate of 9.3 Å [52]. In Fig. 1(c), we
show the atomic displacements along a line that cuts near
the center of the polaron. As expected, also the displace-
ments follow an approximately Gaussian profile.
In Figs. 1(d) and 1(e), we analyze the composition of the

polaron in terms of the Fourier amplitudes Ank and Bqν.

Panel (d) shows that the electron wave function draws
weight primarily from KS states at the bottom of the
conduction band. This localization in reciprocal space is
consistent with the highly delocalized nature of the polaron;
analogous structures are observed in the related physics of
Wannier excitons [62]. In panel (e), we see the phonon
eigenmodes participating in the polaron. There is a strong
contribution from the longitudinal optical (LO) phonons at
the zone center, around 77 meV; this is an indication of
Fröhlich-type electron-phonon coupling. Our approach
also reveals a non-negligible contribution from longitudinal
acoustic (LA) phonons, up to 40 meV. By integrating jBqνj2
across the Brillouin zone and summing over the phonon
branches, we find that the electron polaron in LiF involves
∼5 LO phonons and ∼3 LA phonons, respectively.
Figure 1(f) shows the polaron eigenvalue ε and formation

energy ΔEf as a function of supercell size. For supercells
smaller than 12 × 12 × 12 unit cells, the nonlinear eigen-
problem in Eqs. (4) and (5) does not admit localized
solutions. This can be understood as a manifestation of the
Mott transition [63] at a critical density of 4 × 1019 cm−3.
Below this critical density we find localized solutions of the
type shown in Fig. 1(a), with an energy that scales as a
constant plus a term proportional to L−1, where L is the

(d)

(e) (g)

(f)

(b)

(c)

(a)

FIG. 1. Large electron polaron in LiF. (a) Isosurface of the polaron density jψ j2 and ball-stick model of LiF, with Li in green and F in
silver. (b) Cross section of the polaron density jψ j2 along a [010] line cutting through the center. (c) Modulus of the atomic
displacements projected along the [010] direction and taken on a -Li-F- chain of atoms nearest to the polaron center. The horizontal axes
in (a)–(c) are aligned. (d),(e) Band structures and phonon dispersions of LiF, respectively. The Fourier amplitudes Ank and Bqν are
superimposed to the bands, with the radius of the circle proportional to their square modulus. In (d), the zero of the energy is aligned with
the valence-band top. (f) Polaron formation energyΔEf and eigenvalue ε as a function of supercell size. The dashed lines are the Makov-
Payne extrapolations. The shading indicates that no localized solution was found, and MIT stands for metal-to-insulator transition. The
numbers next to the circles indicate the unit cells in each supercell, e.g., 12 means 12 × 12 × 12 supercell. (g) Polaron energies
(triangles) and eigenvalues (circles) obtained with our method using the model Fröhlich electron-phonon coupling compared to the
solution of the Pekar polaron model.

PHYSICAL REVIEW LETTERS 122, 246403 (2019)

246403-3



supercell size. This trend is understood as the Madelung
energy of a superlattice of polarons. If we extrapolate to
L → ∞, we obtain the energy of one isolated polaron
[64,65]. In this dilute limit, the polaron formation energy is
−0.23 eV and the polaron eigenvalue is −0.80 eV with
respect to the conduction band bottom. The ratio between
these values follows approximately the 1=3 scaling law that
is expected for the Pekar polaron, which considers exclu-
sively the Fröhlich coupling [35,48].
To validate our approach for LiF, we performed self-

interaction corrected DFT calculations up to supercells of
size 7 × 7 × 7 unit cells, containing up to 686 atoms [48].
In agreement with the results of Eqs. (4) and (5), these
direct DFT calculations did not yield any localized sol-
utions. Calculations for supercells large enough to have
localized solutions would be prohibitively expensive, as
they involve >3400 atoms. Therefore, in order to validate
our theory in the dilute limit, we follow an alternative route
and we compare with the prediction of the continuum Pekar
polaron model [10]. To this aim, we repeat all calculations
in Fig. 1(f) after replacing the band structure by a parabolic
model with the DFT effective mass, the phonon dispersions
by a dispersionless LO mode, and the electron-phonon
matrix elements by the long-range Fröhlich interaction
following Ref. [66]. In Fig. 1(g), we show that our theory

reproduces exactly the energetics of the Pekar model in the
continuum limit.
Now we move to Li2O2 in Fig. 2. In this case, we find a

small polaron, as seen from the electron wave function in
Fig. 2(a). The polaron is as small as two adjacent O − 2p
atomic orbitals [Fig. 2(g)]; from the cross-sectional view in
Fig. 2(b) we deduce a size 2rp ¼ 0.63 Å in the (100) plane.
Correspondingly, the atomic displacements are highly
localized, and only the first shell of atoms around
the polaron center exhibits non-negligible distortions
[Fig. 2(c)]. The electronic and vibrational Fourier ampli-
tudes Ank and Bqν of the polarons look very different from
the case of LiF in Fig. 1. In fact, in Fig. 2(d) we see that all
states of the lowest conduction bands contribute uniformly
to the polaron wave function; similarly, phonons from the
entire Brillouin zone and from the nonpolar and polar
branches in Fig. 2(e) contribute to the atomic displacements.
These signatures are reminiscent of Holstein-type electron-
phonon coupling [15], albeit with multiple electron bands
and phonon branches involved. From the square amplitudes
jBqνj2, we infer that the small polaron in Li2O2 involves∼13
polar optical phonons centered around 72 meV and ∼46
nonpolar optical phonons at energies near 96 meV.
In Fig. 2(f), we show the polaron eigenvalue and

formation energy as a function of supercell size. In this

FIG. 2. Small electron polaron in Li2O2. (a) Isosurface of the polaron density jψ j2 and model of Li2O2, with Li and O atoms in green
and red, respectively. (b) Cross section of jψ j2 along a [100] line cutting through the center. (c) Modulus of the atomic displacements
along a [001] line passing through the O atom at the center. (d), (e) Band structures and phonon dispersion relations of Li2O2,
respectively. The amplitudes Ank and Bqν are superimposed as circles. The energy zero in (d) is aligned with the valence-band top.
(f) Polaron formation energy and eigenvalue vs supercell size. The dashed gray lines represent the Makov-Payne extrapolations. The
green triangle is the result of an explicit DFT calculation from Ref. [48]. (g) Comparison between the polaron wave function obtained
from our method (left), and an explicit DFT calculation (right, Ref. [48]), and the corresponding formation energies.
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case, we observe the formation of polarons already for
3 × 3 × 3 supercells, and the corresponding critical density
for the Mott transition is in the range ∼1021 cm−3 [48]. The
small electron polaron in Li2O2 is very energetic, exhibiting
ΔEf ¼ −4.9 eV and ε ¼ −11.0 eV (with respect to the
conduction band bottom) in the dilute limit. Our calculated
formation energy is in good agreement with our explicit
supercell calculations, the deviation being of 3% for the
smallest supercell [Figs. 2(f) and 2(g)].
Since Li2O2 exhibits localized polarons in fairly small

supercells, in Fig. 2(f) we compare the wave function
obtained within our method and that obtained via an
explicit DFT calculation using the self-interaction correc-
tion scheme described in Ref. [48]. Apart from the slight
asymmetry in the wave function obtained via the DFT
calculation, the two results are in very good agreement.
Furthermore, our result is essentially identical to previous
findings based on hybrid functional calculations [67].
The agreement with explicit DFT calculations validates
a posteriori our initial assumption leading to Eq. (1). Taken
together, the results in Figs. 1 and 2 indicate that our theory
is able to describe both large and small polarons on the
same footing. A more in-depth analysis of the formalism
and additional tests are provided in Ref. [48].
In summary, we developed a theoretical and computa-

tional approach that allows us to investigate, for the first
time, polaron energies and wave functions across the length
scales, without resorting to supercell calculations. Our
work opens up many new directions in polaron physics.
For example, the spectral decomposition encoded in the
Fourier amplitudes Ank and Bqν could be used to construct
model Hamiltonians with realistic materials parameters.
This additional step will make it possible to supplement
DFT with path integrals or diagrammatic Monte Carlo
calculations [9,31], and ultimately open the way to pre-
dictive ab initio many-body calculations of polarons in real
materials.
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