
 

Variational Neural-Network Ansatz for Steady States in Open Quantum Systems

Filippo Vicentini,1 Alberto Biella,1 Nicolas Regnault,2 and Cristiano Ciuti1
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We present a general variational approach to determine the steady state of open quantum lattice systems
via a neural-network approach. The steady-state density matrix of the lattice system is constructed via a
purified neural-network Ansatz in an extended Hilbert space with ancillary degrees of freedom. The
variational minimization of cost functions associated to the master equation can be performed using a
Markov chain Monte Carlo sampling. As a first application and proof of principle, we apply the method to
the dissipative quantum transverse Ising model.
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In spite of the tremendous experimental progress in the
isolation of quantum systems, a finite coupling to the
environment [1] is unavoidable and certainly plays a crucial
role in the practical implementation of quantum informa-
tion and quantum simulation protocols [2]. Moreover,
through an active control of the environment via the so-
called reservoir engineering, an open quantum manybody
system can be prepared in nontrivial phases [3–5] with also
possible quantum applications [6,7]. The theoretical
description of open quantum manybody systems is in
general out-of-the equilibrium and much less developed
than for equilibrium systems. A mixed state with a finite
entropy can be described by a density matrix, whose
evolution is described by a master equation. Recently, a
few theoretical methods have been developed to solve the
master equation of open quantum manybody systems,
including analytical approaches based on the Keldysh
formalism [8,9], numerical algorithms based on matrix
product operator and tensor-network techniques [10–14],
cluster mean-field methods [15,16], corner-space renorm-
alization [17–19], Gutzwiller mean-field [20], full configu-
ration-interaction Monte Carlo methods [21], permutation-
invariant solvers [22], or efficient stochastic unravelings for
disordered systems [23]. The research in the field is very
active, since the different methods are optimal for different
specific regimes. For example, the corner-space renormal-
ization method is best suited for systems with moderate
entropy, while matrix product operator techniques are best
suited to systems with short-range quantum correlations.
In the last decade, the field of artificial neural networks

has enjoyed a dramatic expansion and success thanks to
remarkable applications in the recognition of complex
patterns such as visual images or human speech (for a
recent review see, e.g., Ref. [24]). The optimization (super-
vised learning) of the network is obtained by tuning the
weights quantifying the connections between neural units

via a variational minimization of a properly defined cost
function. The wave function of a manybody system is in
general a complex quantity, which is hard to be recognized.
Recent works have proposed to exploit artificial neural
networks to construct trial wave functions, where the
connection weights in the network play the role of varia-
tional parameters [25,26]. Neural-network approaches have
already been successfully applied to a wide number (see e.g.
Refs. [27–31]) of closeHamiltonian systems.However, they
have not yet been generalized to the important quantum
manybody problem of open systems.
In this Letter, we present a theoretical approach based on

a variational neural-network Ansatz in order to determine
the steady state of the master equation of open quantum
lattice systems. We construct the Ansatz for the mixed
density matrix starting from a restricted Boltzman machine
Ansatz for a pure many-body wave function in an extended
Hilbert space. We determine the optimal variational param-
eters by minimizing a cost function which involves the
Liouvillian superoperator associated to the master equation
for the density matrix. As a first application, we have
considered the dissipative tranverse field quantum Ising
model. We present a proof-of-principle demonstration by
benchmarking the neural-network calculations of the
steady state against numerically exact simulations per-
formed by quantum trajectories in the full Hilbert space
[32]. Our minimization of the cost function is performed by
a Markov chain Monte Carlo sampling of the gradient and
is thus scalable to a large number of lattice sites.
Perspectives of the present approach are discussed in the
conclusions.
The general task that we wish to solve is the determi-

nation of the steady state of an open quantum system
described by the Lindblad master equation [1] for the
system reduced density matrix ρ̂, which reads (setting
ℏ ¼ 1):
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_̂ρ ¼ Lρ̂ ¼ −i½Ĥ; ρ̂� þ
X
j

γj
2
½2L̂jρ̂L̂

†
j − fL̂†

j L̂j; ρ̂g�; ð1Þ

where L is the so-called Liouvillian superoperator depend-
ing on the system Hamiltonian operator Ĥ. The coupling to
the environment is represented by interaction channels with
the reservoir characterized by dissipation rates γj and jump
operators L̂j acting on the system. Here we will focus on
situations where the steady state (∂tρ̂SS ¼ 0) is unique. In
this case, the steady-state density matrix can be obtained as
ρ̂SS ¼ limt→∞ρ̂ðtÞ regardless of the initial condition.
Although it is possible to engineer peculiar Liouvillians
with more than one steady state [33], typical physical
systems with a finite Hilbert space dimension have a unique
steady state [34–36].
For the many-body problem an analytical expression for

ρ̂SS can be found in very few cases [37,38]. In general,
because of the exponential growth of the Hilbert space with
the number of lattice sites, describing the full density
matrix requires exponentially many complex numbers,
which in practice can be done exactly only for a small
number of sites. If one wants to attack the problem within a
variational framework, the density matrix can be repre-
sented by an Ansatz ρ̂v depending on a set of variational
parameters v. If fjσi ¼ jσ1; σ2;…; σNig denotes a basis of
states for the system Hilbert space, the density matrix can
be expressed in the form

ρ̂ðvÞ ¼
X
σ;σ0

ρvðσ; σ0Þjσihσ0j: ð2Þ

In order to construct our neural-network Ansatz for
the density matrix, we consider an extended Hilbert space
H ¼ HS ⊗ HA where HS;A represents respectively the
system and ancillary Hilbert spaces. Such extended
space is spanned by the basis set fjσ; aig where a ¼
ða1; a2;…; aNa

Þ labels the ancillary degrees of freedom.
We start by considering a pure state in the extended Hilbert
space, represented by the wave function ψ vðσ; aÞ. In this
framework the reduced density matrix of the system S is
obtained by tracing out the ancillary degrees freedom [39],
namely

ρvðσ; σ0Þ ¼
X
a

ψ vðσ; aÞψ⋆
v ðσ0; aÞ: ð3Þ

The next step is to represent ψ vðσ; aÞ via a neural-network
Ansatz. This purified procedure automatically ensures that
ρ̂v is Hermitian and positive semidefinite, as required for a
density matrix. In a recent paper, Torlai and Melko [39]
proposed to describe purified wave functions as

ψ vðσ; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PvAðσ; aÞ

q
exp

�
−
1

2
log½Pvθðσ; aÞ�

�
: ð4Þ

Both the amplitude PvAðσ; aÞ and phase-related
function Pvθðσ; aÞ of the purified wave function are
given by the Boltzmann-like expression Pνðσ; aÞ ¼P

h exp½−Eνðσ; a; hÞ� (with ν ∈ fvA; vθg), where the asso-
ciated dimensionless energy reads

Eνðσ;a;hÞ ¼ σ ·bðσÞ
ν þ a · bðaÞν þh · bðhÞν þ σTWνhþ σTUνa:

ð5Þ
Note that the Ansatz parameters are v ¼ ðvA; vθÞ where

vν ¼ ðbðσÞ
ν ; bðaÞν ; bðhÞν ;Wν;UνÞ. The rectangular matrix Wν

weighs the connections between the system variables
(visible layer) to the auxiliary variables (hidden layer),
while the weight matrix Uν quantifies the connection
between the system variables and the ancillary ones (ancil-
lary layer). Such a neural-networkAnsatz is represented by a
tripartite restricted Boltzmannmachine depicted in Fig. 1. In
other words, there are two independent artificial neural
networks, one for the amplitude (ν ¼ A) and one for the
phase (ν ¼ θ). By substituting those formulas into Eq. (3)
and carrying out the sum over the ancillary degrees of
freedom, one obtains a closed formula for the entries of the
density matrix:

ρvðσ; σ0Þ ¼ exp½Γ−
v ðσ; σ0Þ þ Γþ

v ðσ; σ0Þ þ Πvðσ; σ0Þ�; ð6Þ
where the expression of Γþ;− and Π can be found in the
Supplemental Material [40]. The representation power
[47–49] of this Ansatz can be systematically improved by

FIG. 1. Graph representation of the artificial neural network
used for the density matrix Ansatz. The vector σ ¼
ðσ1; σ2;…; σNÞ contains the variables of the physical system
(visible layer). The vector a ¼ ða1; a2;…; σNa

Þ describes the
ancillary degrees of freedom of the extended Hilbert space
(ancilla layer), where a purified density matrix is considered
[see Eq. (3)]. The vector h ¼ ðh1; h2;…; hNh

Þ contains variables
of auxiliary nodes (hidden layer). The network parameters are

vν ¼ ðbðσÞ
ν ; bðaÞν ; bðhÞν ;Wν;UνÞ. One network is used for the

representation of the amplitude (ν ¼ vA) of the purified wave
function in Eq. (3), while another independent network with the
same topology is used to represent the phase (ν ¼ vθ).
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increasing the density of the hidden (α ¼ Nh=N) and
ancillary layer (β ¼ Na=N). It is worth pointing out that
this scheme is not specific to this network topology, but
relies only on the general fact that if two visible layers are
connected by a shallow ancillary layer, the ancilla can be
traced out analytically and an efficient neural-network
description of the density matrix can be obtained.
Having defined a variational Ansatz ρ̂ðvÞ, we now wish

to define a variational principle to determine the optimal
parameters. In particular, we have to recast the search for
the steady state into a minimization problem for a real,
positive cost function CðvÞ, which has a global minimum
when the master equation Lρ̂v ¼ 0 is satisfied [50].
Moreover, in order to be able to deal with large Hilbert
spaces, we need a quantity that can be sampled and
computed efficiently. These requirements are met by the
following cost function expressed in terms of the 2-norm of
the time derivative of the density matrix:

CðvÞ ¼ jjdρ̂v=dtjj22
jjρ̂vjj22

¼ Tr½ρ̂†vL†Lρ̂v�
Tr½ρ̂†v ρ̂v�

; ð7Þ

as (i) CðvSSÞ ¼ 0 ⇔ ρ̂ðvSSÞ ¼ ρ̂SS and (ii) CðvÞ ≥ 0.
It is useful to rewrite Eq. (7) as a sum over the whole

space of bounded operators on the Hilbert space:

CðvÞ ¼
X
σ;σ̃

pvðσ; σ̃ÞjClocðv; σ; σ̃Þj2; ð8Þ

where pvðσ; σ̃Þ ¼ jρvðσ; σ̃Þj2=Z corresponds to a probabil-
ity distribution as Z ¼ P

σ;σ̃ jρvðσ; σ̃Þj2 [51]. The local
contribution reads [52]:

Clocðv; σ; σ̃Þ ¼
X
σ0;σ̃0

Lðσ; σ̃; σ0; σ̃0Þ ρvðσ
0; σ̃0Þ

ρvðσ; σ̃Þ
: ð9Þ

In order to find the global minimum of the cost function
[Eq. (7)] by means of gradient-based iterative schemes, we
need to compute its gradient

∇vCðvÞ ¼
X
σ;σ̃

pvðσ; σ̃ÞClocðv; σ; σ̃Þ⋆

×

�X
σ0;σ̃0

Lðσ; σ̃; σ0; σ̃0Þ ρvðσ
0; σ̃0Þ

ρvðσ; σ̃Þ
Ovðσ0; σ̃0Þ

�

− CðvÞOv; ð10Þ

where we have defined the log-derivatives of the density
matrixOv ¼

P
σ;σ̃Ovðσ; σ̃Þ andOvðσ; σ̃Þ ¼ ∇v log ρvðσ; σ̃Þ,

which can be efficiently computed for the considered neural
network.
The computational complexity of evaluating ∇CðvÞ

exactly grows exponentially with the size of the system.
This cost can be considerably reduced if one only uses an

estimate of ∇CðvÞ obtained by sampling the values ðσ; σ̃Þ
according to the probability pvðσ; σ̃Þ. Because the normali-
zation factor Z is not fixed, we cannot sample the
distribution directly and have to resort to a Markov chain
Monte Carlo method [53] with Metropolis update rules
[54]. At every sampling step, we propose to update the
configuration ðσ; σ̃Þ → ðσ0; σ̃0Þ by switching a random
number of spins and accept the new configuration with
probability min ( exp½pvðσ; σ̃Þ=pvðσ0; σ̃0Þ�; 1).
Finally, in order to find the global minimum of the cost

function, we employ a standard stochastic gradient descent
algorithm [55]. In order to improve the performance of the
stochastic gradient descent (i.e., to reduce the number of
iterations needed to converge to the global minima of the
cost function) we update the variational parameters accord-
ing to the metric of the space of density matrices exploiting
the stochastic reconfiguration approach [41]. During the
optimization procedure we sample the physical observables
of interest through another Markov chain as

hΘ̂i ¼ Tr½ρ̂ Θ̂�
Tr½ρ̂� ¼

X
σ

pobs
v ðσÞ

X
σ̃

ρvðσ; σ̃ÞΘðσ̃; σÞ
ρvðσ; σÞ

; ð11Þ

where pobs
v ðσÞ ¼ ρvðσ; σÞ=Tr½ρ̂�.

In order to benchmark our neural-network approach for
open quantum systems, we consider here the dissipative
quantum transverse Ising model, whose Hamiltonian is

H ¼ V
4

X
hj;li

σ̂zjσ̂
z
l þ

g
2

X
j

σ̂xj ; ð12Þ

being σ̂αj the Pauli matrices (α ∈ fx; y; zg) acting on the jth
site. The first term represents the nearest-neighbor spin-
spin interaction depending only on the z components, V
being the coupling strength. The second term accounts for a
local and uniform magnetic field along the transverse
direction x. We consider local dissipative spin-flip proc-
esses described by the site-dependent jump operator

L̂ðzÞ
j ¼ σ̂−j ¼ 1

2
ðσ̂xj − iσ̂yjÞ, which fully determine the master

equation in Eq. (1).
Numerical results for steady-state observables of the

dissipative quantum transverse Ising model on a 1D
periodic chain are reported in Fig. 2. In particular, we
report the spatial components of the averaged magnetiza-
tion as a function of the magnetic field g (in units of the
dissipation rate γ) for V=γ ¼ 2. For N ¼ 16 lattice sites the
predictions of the neural-network variational method
(circles) are compared to the results obtained with a
brute-force exact integration of the master equation in
the whole Hilbert space, showing a good agreement over all
the parameter range. For g≲ γ and g≳ 2.5γ a remarkable
precision is reached for all the local observables with a low
density of the hidden and ancillary layer α ¼ β ¼ 1 and
Oð102Þ minimization steps. For 1≲ g=γ ≲ 2.5 a higher
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number of variational parameters is required. In particular,
as shown in Fig. 3, a systematic improvement of the relative
error ϵrel½hσxi� with respect to the exact solution can be
obtained by increasing β. Interestingly, for 1≲ g=γ ≲ 2.5,
we note that the gradient-descent procedure requires more
iterations. This region corresponds to the range of g=γ
where the smallest nonzero eigenvalue of L†L decreases
significantly [56]. In this range the steady-state density
matrix also displays nontrivial correlations and nonthermal
mixness properties [56]. Remarkably, the fidelity of the
reconstructed local density matrix with respect to the exact
one is always larger than 0.998 for all the values of g=γ
considered. Finally, as an example of convergence, the top
panel of Fig. 4 depicts a typical evolution of the cost
function in the iterative minimization procedure for a fixed
set of parameters (g=γ ¼ 1), showing a good convergence

FIG. 2. Top panel: sketch of the considered physical system
described by the dissipative quantum transverse Ising 1D model
with periodic boundary conditions. The quantity g denotes an
applied magnetic field, V the spin-spin coupling, and γ the spin
flip rate. Bottom panel: the prediction of the neural-network
variational calculations (circles) are compared to the results
obtained by quantum trajectory simulations of the master
equation by considering the whole Hilbert space (solid lines).
The top, middle, and bottom panels depict the expectation values
of the three components of the averaged magnetization as a
function of the applied magnetic field g (in units of γ).
Model parameters: V=γ ¼ 2 (spin-spin coupling), N ¼ 16 (num-
ber of lattice sites). Neural-network parameters: α ¼ β ¼ 1 for
g ≤ γ and g ≥ 2.5γ while α ¼ 1 and β ¼ 4 for the remaining
points. The parameters required for the convergence of the
Monte Carlo calculations depend on the value of g=γ, with
the intermediate region being the most demanding. The maxi-
mum number of accepted Monte Carlo samples is 8640
and the maximum number of steps for the stochastic gradient
descent is 104. For points outside the intermediate region, 3000
accepted Monte Carlo samples and 103 iteration steps have been
performed.

FIG. 3. Relative error with respect to the exact result for the
observable hσxi as a function of α and β. Parameters are set as in
Fig. 2 but for a fixed value g=γ ¼ 1.2.

FIG. 4. Same parameters as in Fig. 2 but for a fixed value
g=γ ¼ 1. Top panel: the cost function is shown as a function of
the iteration steps. Bottom panel: the corresponding evolution of
the x component of the average magnetization during the
stochastic minimization is shown.
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towards the global minimum. In the bottom panel of Fig. 4,
the convergence of the x component of the averaged
magnetization is also reported.
In conclusion, we have presented a general variational

approach for the steady-state density matrix of open
quantum manybody systems based on an artificial neu-
ral-network scheme. Our method is scalable since the cost
function associated to the Liouvillian of the master equa-
tion can be calculated via Monte Carlo sampling. We have
demonstrated a proof of principle of the theoretical scheme
by a successful benchmarking to brute-force finite-size
simulations in the full Hilbert space for arrays of spins
described by the dissipative quantum transverse Ising
model. We would like to point out that the present approach
does not depend on the specific network topology. Indeed,
the variational procedure presented in this Letter is general
and can be applied to many other neural networks or
physically inspired variational Ansätze. There are many
future developments at the horizon, including the study of
dynamical properties, the use of deep neural networks and/
or alternative cost functions, comparison with other
existing techniques as well as the study of disordered
systems without translational invariance. The neural-net-
work approach has the potential to pave the way to the
theoretical study of a wide spectrum of open quantum
manybody systems.

Numerical code for this Letter has been written in Julia
[57] and is accessible online [58].

We thank G. Carleo, V. Savona, and G. Orso for fruitful
discussions. Full space simulations have been made with
QuantumOptics.jl [59] and with QuTiP [60,61]. We
acknowledge support from ERC (via Consolidator Grant
CORPHO No. 616233). This work was granted access to
the HPC resources of TGCC under the allocation 2018-
A0050510601 attributed by GENCI (Grand Equipement
National de Calcul Intensif).

Note added.—Recently, we became aware of related
independent theoretical works that have been carried on
in parallel [62–64].

[1] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, Oxford,
England, 2007), https://doi.org/10.1093/acprof:oso/
9780199213900.001.0001.

[2] M. H. Devoret and R. J. Schoelkopf, Science 339, 1169
(2013).

[3] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299
(2013).

[4] C. Noh and D. G. Angelakis, Rep. Prog. Phys. 80, 016401
(2017).

[5] M. J. Hartmann, J. Opt. 18, 104005 (2016).
[6] F. Verstraete, M. M.Wolf, and J. Ignacio Cirac, Nat. Phys. 5,

633 (2009).

[7] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M.
Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt,
Nature (London) 470, 486 (2011).

[8] L. M. Sieberer, M. Buchhold, and S. Diehl, Rep. Prog. Phys.
79, 096001 (2016).

[9] M. F. Maghrebi and A. V. Gorshkov, Phys. Rev. B 93,
014307 (2016).

[10] E. Mascarenhas, H. Flayac, and V. Savona, Phys. Rev. A 92,
022116 (2015).

[11] J. Cui, J. I. Cirac, and M. C. Bañuls, Phys. Rev. Lett. 114,
220601 (2015).

[12] D. Jaschke, S. Montangero, and L. D. Carr, Quantum Sci.
Technol. 4, 013001 (2019).

[13] A. H. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco, J.
Eisert, and S. Montangero, Phys. Rev. Lett. 116, 237201
(2016).

[14] A. Kshetrimayum, H. Weimer, and R. Orús, Nat. Commun.
8, 1291 (2017).

[15] A. Biella, J. Jin, O. Viyuela, C. Ciuti, R. Fazio, and D.
Rossini, Phys. Rev. B 97, 035103 (2018).

[16] J. Jin, A. Biella, O. Viyuela, L. Mazza, J. Keeling, R. Fazio,
and D. Rossini, Phys. Rev. X 6, 031011 (2016).
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