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Quantum networks allow in principle for completely novel forms of quantum correlations. In particular,
quantum nonlocality can be demonstrated here without the need of having various input settings, but only
by considering the joint statistics of fixed local measurement outputs. However, previous examples of this
intriguing phenomenon all appear to stem directly from the usual form of quantum nonlocality, namely via
the violation of a standard Bell inequality. Here we present novel examples of “quantum nonlocality
without inputs,” which we believe represent a new form of quantum nonlocality, genuine to networks. Our
simplest examples, for the triangle network, involve both entangled states and joint entangled
measurements. A generalization to any odd-cycle network is also presented.
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Introduction.—Bell’s theorem is arguably among the
most important results in the foundations of quantum
theory [1]. It also had a major influence on the development
of quantum information science [2], and led recently to the
so-called device-independent paradigm [3-6].

In his seminal work, Bell demonstrated that two distant
observers, performing local measurements on a shared
entangled state, can establish strong correlations which
cannot be explained in any physical theory satisfying a
natural principle of locality. These nonlocal quantum
correlations can be demonstrated experimentally using
Bell inequalities. Recently, long-awaited loophole-free
tests of quantum nonlocality were finally reported, provid-
ing the basis for the implementation of device-independent
quantum information protocols [7-9].

An interesting direction is to understand quantum non-
locality in scenarios involving more than two observers.
The standard approach to this problem (referred to as
multipartite Bell nonlocality) considers three (or more)
distant observers sharing an entangled state distributed by a
common source, and leads to interesting new effects; see,
e.g., Ref. [10] for a review. This represents the simplest
generalization of quantum nonlocality to the multipartite
case, and most of the concepts and tools developed
for bipartite nonlocality can generally be directly extended
here.

Recently, a completely different approach to multipartite
nonlocality was proposed [11-13], focusing on quantum
networks. Here, distant observers share entanglement
distributed by several sources which are assumed to be
independent from each other. By performing joint
entangled measurements (such as the well-known Bell
state measurement used in quantum teleportation [14]),
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observers may correlate distant quantum systems and
establish strong correlations across the entire network.
Typically, each source connects here only a strict subset
of the observers. It turns out that this situation is funda-
mentally different from standard multipartite nonlocality,
and allows for radically novel phenomena. As regards
correlations, it is now possible to witness quantum non-
locality in experiments where all the observers perform a
fixed measurement; i.e., they receive no input [12,13,
15-19]. This effect of quantum nonlocality without inputs
is remarkable, and radically departs from previous forms of
quantum nonlocality.

So far, however, all known examples of quantum non-
locality without inputs can be traced back to standard Bell
inequality violation. This naturally leads to the question of
whether completely novel forms of quantum nonlocality,
genuine to the network configuration, could arise. Here we
address this question, by presenting an instance of quantum
nonlocality in the triangle network, which we argue is
fundamentally different from previously known forms of
quantum nonlocality. In particular, our construction cru-
cially relies on the combination of shared entangled states
and joint entangled measurements performed by the
observers. We present several generalizations of our main
result, in particular to any cycle network featuring an odd
number of parties. We conclude with a discussion and
comment on the main open questions.

Scenario and main result—We consider the so-called
triangle quantum network sketched in Fig. 1. It features
three observers (Alice, Bob, and Charlie). Every pair of
observers is connected by a (bipartite) source, providing a
shared physical system (represented, e.g., by a classical
variable or by a quantum state). Importantly, the three
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FIG. 1. The triangle network features three observers (green
circles), connected by three independent bipartite sources. Here,
the sources distribute the quantum states y,, s, and .

sources are assumed to be independent of each other.
Hence, the three observers share no common (i.e., tripar-
tite) piece of information. Based on the received physical
resources, each observer provides an output (a, b, and c,
respectively). Note that the observers receive no input in
this setting, contrary to standard Bell nonlocality tests. The
statistics of the experiment are thus given by the joint
probability distribution P(a, b, c).

Characterizing the set of distributions P(a, b, ¢) that can
be obtained from physical resources (in particular, classical
or quantum) is a highly nontrivial problem. The main
difficulty stems from the assumption that the sources are
independent. This makes the set of possible distributions
P(a, b, c) nonconvex, and standard methods used in Bell
nonlocality are thus completely unadapted to this problem.
Strong bounds on the limits of classical correlations are
thus still missing, which in turn renders the discussion of
quantum nonlocality in the triangle network challenging.

Here we follow a different approach in order to present
instances of quantum nonlocality in the triangle network.
Specifically, we first construct explicitly a family of
quantum distributions Py (a, b, c), using both entangled
quantum states (distributed by each of the three sources),
and entangled joint measurements performed by each
observer. Then we show that these quantum distributions
cannot be reproduced by any “trilocal” model, i.e., a local
model “a la Bell” where all three sources are assumed to be
independent from each other. Formally, we prove that

Py(a.b,c)

;é/da/dﬂ/dyPA(a

where a € X, p €Y, and y € Z represent the three local
variables distributed by each source and P4(alf,y),

p.7)Pp(bly.a)Pc(cla.f), (1)

Pg(bly,a), Pc(cla, B) represent arbitrary deterministic
response functions for Alice, Bob, and Charlie. Our proof
does not rely on the violation of some Bell-type inequality,
but is based on a logical contradiction. More precisely, we
first identify a certain number of necessary properties that
any trilocal model should have in order to reproduce
Py(a.b,c), and then show that these properties cannot
all be satisfied at the same time.

Let us now construct explicitly our quantum distribu-
tions Py(a,b,c). Each source produces the same pure
maximally entangled state of two qubits,

1
|l//y>AyBy = lwa)p,c, = |l///1>cﬂAﬂ = E(|00> + [11)).

Note that each party receives two independent qubit
subsystems; for instance, Alice receives subsystems Ag
and A,. Next, each party performs a projective quantum
measurement in the same basis. In the following, we use
the basis (a set depending on one real parameter u)
given by

1) = 101),
) = [10),

o) = ul|00) + v[11),
1) = 0]00) —ul11), (2)

with 2 + 92 = 1 and 0 < v < u < 1. For Alice, we label it
{IPa)a,n,} for ¢, € {1. 1. x0. 21} and adopt similar nota-
tions for Bob and Charlie. Remark that only two out of the
four states in that basis are entangled. The statistics of the
experiment are given by

2

PQ(a’ b? C) = |<¢a|<¢b‘<¢cHl//y>|l//a>|l///3>

’

where we did not specify the Hilbert spaces supporting the
states. Note that when evaluating Py (a, b, c), one should
be attentive to which Hilbert space supports each state and
measurements. We now state the main result of this Letter:

Theorem I: The quantum distribution Py(a, b, c) can-
not be reproduced by any classical trilocal model [in the

sense of Eq. (1)] when u2, < u?> <1, where u2, =

{[<3 4 (9 + 6v2)*3]/[2(9 + 61/3)'/%]} ~ 0.785.

We now sketch the proof; all details are given in
Appendix A of the Supplemental Material [20]. The main
idea is that the quantum distribution Py (a, b, c) features a
certain number of specific constraints. Indeed, one has that

Pola=1b=1)=Pola=].b=1)=0. (3)

Symmetric relations are obtained by permuting the parties.
Also, the number of parties that have an output in y =
{x0»x1} must be odd. Moreover, introducing the notation
uy = —v; = u and vy = u; = v (such that |y,) = u,|00)+
v,|11)) we have that
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Poyin N ) = cui. Po(xin . 1) =

8”

1
Polxisxjxe) = g(uiu,"lk + v;v,04)? (5)
and similar relations by permuting the parties. These four
properties are essentially all we need. Indeed, for some
specific choice of the measurement parameter u, no trilocal
model can be compatible with all these four constraints at
once. We prove by contradiction, assuming a trilocal
model, in two successive steps where we identify con-
ditions that this trilocal model reproducing Py(a,b,c)
should fulfill, to finally arrive at a contradiction.

Step 1.—Here we consider the coarse graining of the
output set {1, |, ¥ = {x0.x1}}- We show that the sources
sets can be partitioned in two subsets of equal weight
X =Xo[IX1, Y =Yo[1Y\, Z=Zo]]Z, such that upon
receiving f and y, Alice outputs (i) a = 1 if she receives
peYyand y € Z,, (ii) a = | if she receives f € Y, and
y € Z,, (iii)) a = y otherwise (similarly for Bob, Charlie,

see Fig. 2).
Proof.—See Appendix B of the Supplemental Material
[20], it relies on Egs. (3)—(5). [ ]

Step 2.—Let us introduce the following probability
distribution

a =l c =1

b=y

FIG.2. Step 1 shows that any trilocal model compatible with the
quantum distribution Py(a, b, ¢) must have a specific structure.
Specifically, for each source, the classical variable set can be
divided into two equal weight [i.e., P(a € Xy) = ... = 1/2]
disjoint subsets containing all output information on the coarse
grained distribution where y = {yo,y;} group together two
outputs. For instance, when a € Xy, f € Yy, and y € Z,, the
outputs must be a = | for Alice, b = y for Bob, ¢ =1 for
Charlie. Note that the ordering is important.

q(i.j.k.1)

=dpla=y;.b=x;.c =y (a.py) €(X,.Y,.Z,)]. (6)

The following marginal distributions of ¢(i, j, k, t) satisfy

1
(i,). k Zq i,j, k1) —E(uiujuk +vvv)?, (7)

(8)

NI'—‘

qujk[— =

and similar constraints on g(i,t = 1), ¢(j, 1), and g(k,1).

Proof.—From Step 1, one can see that all parties output y
iff (o, B,7) € (X,,Y,,Z,) with t = 0 or t = 1. This ensures
that q(i,j,k,t) is properly normalized. Equation (7) is
straightforward from Eq. (5). Equation (8) can be deduced
from step 1 and the fact that Alice’s output must be
independent of a (see Appendix A of the Supplemental
Material [20] for a more detailed proof). =

At this point we arrive at a contradiction. Indeed, if a
trilocal model existed, one should be able to define a
distribution ¢(i, j, k,t) that is compatible with all its
marginals, in particular those marginals discussed above.
However, this is not possible for all values of the parameter
u (which quantifies the degree of entanglement of meas-
urement y,, y;), specifically when 0, 785 ~ u2,, < u*> < 1.
This concludes the proof.

A natural question is whether the distribution P,
is trilocal when u®> <uZ,. In Appendix D of the
Supplemental Material [20], we show that this is the case,
by constructing an explicit trilocal model for u?> = uZ,, (up
to machine precision). We conjecture that P, remains
trilocal up to u? < u?2,,,. Note that this can be proven for the
case u> = 1/2. Here the trilocal model is obtained from
step 1, with y replaced by a uniformly random choice
between y, and y;.

Before entering a more general discussion about the
implications of Theorem 1 and some natural open ques-
tions, we now briefly present several generalizations of the
result.

Generalizations.—The first extension considers the same
scenario as in Theorem 1, with the difference that all
sources now produce the same general entangled two-qubit
pure states 4o|00) + 4,|11), where 15 + 43 = 1. We con-
sider the same measurements (2). In this case, Theorem 1
can be extended, with the condition that u,,,, (1)) Su < 1
(see Appendix A of the Supplemental Material [20] for
details). Interestingly, the lower bound u,, (1) takes its
lowest value for nonmaximally entangled states (4, =
v/2/3). In this case, we find u,, (19) = /2/3, implying
that the projective joint measurement must feature non-
maximally entangled states.

A second generalization considers the triangle network
with higher dimensional quantum systems. Specifically, all
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three sources now produce a maximally entangled two-
qutrit state, i.e., |¢3) = (|00) + [11) +]22))/+/3. Each
party performs the same joint entangled projective
measurement, with nine outcomes, labeled by a €
{6,I,i,)(g,)(f,;(;)(é,;d,)(%} for Alice. The projectors
are on the states

0)=100) (D=1 [3)=]2).

) = nM01) +72|02) +nf2[12),

i) = nl°10) + 12°120) + n'[21).
where the coefficients {#?', 792, #1?} and {5}, n?°, n?'} are
real and chosen such that the nine vectors form an
orthonormal basis. Similarly to Theorem 1, one can show
that for an appropriate choice of these parameters, the
resulting quantum distribution is incompatible with any
trilocal model (see Appendix B of the Supplemental
Material [20]).

A third generalization explores networks beyond the
triangle. Specifically, we prove a generalization of
Theorem 1 for any N-cycle network, with N being odd.
Here all N sources produce a maximally entangled two-
qubit state, and all parties perform the same joint meas-
urement, as in Eq. (2). We show that for any N, the quantum
distribution is incompatible with any N-local model [i.e., a
straightforward generalization from Eq. (1)] when the
measurement parameter u goes asymptotically to 1. Our
approach cannot be directly adapted to even cycles.

Discussion.—We presented novel examples of quantum
nonlocality without inputs, mainly for the triangle network.
We believe that these examples represent a form of
quantum nonlocality that is genuine to the network con-
figuration, in the sense that it is not a consequence of
standard forms of Bell nonlocality. These examples funda-
mentally differ from the one presented by Fritz in Ref. [13]
(as well as related examples in Ref. [17]), relying on the
violation of a standard bipartite Bell inequality. Let us first
briefly review it.

Fritz’s example can be viewed as a standard Bell test,
embedded in the triangle network. Consider that Alice
and Bob share a two-qubit Bell state, with the goal of
violating the CHSH Bell inequality. Testing the CHSH
inequality requires of course local inputs for both Alice
and Bob. Although the triangle network features no
explicit inputs, here effective inputs are provided by
the two additional sources: the source connecting Alice
and Charlie (Bob and Charlie) provides a shared uni-
formly random bit, which is used as Alice’s (Bob’s) input
for the CHSH test. All parties output the “input bits” he
receives. The correspondence between these outputs
ensures that Alice’s (Bob’s) output only depends on
the source she (he) shares with Charlie. Finally, Alice
and Bob both additionally output the output of their local
measurement performed on the shared Bell state. If this

quantum distribution could be reproduced by a trilocal
model, it would follow that local correlations can violate
the CHSH inequality, which is impossible.

Let us comment on some significant differences between
Fritz’s construction and our example of Theorem 1. First,
our construction has a high level of symmetry (all sources
distribute the same entangled state and all measurements
are the same) with only four outputs per party. In particular,
it involves an entangled state for each source, whereas the
example of Fritz requires entanglement for only one source
(it can be symmetrized, but at the cost of adding new
outputs). Lastly, our example appears to rely on the use of
joint measurements with entangled eigenstates, while
Fritz’s model uses only separable measurements. Hence
Fritz’s construction could be obtained from PR boxes [21].
As the equivalent of joint measurements does not exist for
PR boxes [22,23], we believe that our example cannot be
obtained from PR boxes.

Note that all the above arguments are only based on
qualitative and intuitive arguments. Still, we believe that the
judicious combination of entangled states and joint
entangled measurements is the key for a new form of
quantum nonlocality. Proving that the distribution
Py(a.b,c) can only be obtained using three entangled
sources and/or joint entangled measurements would re-
present significant progress. An idea would be to use the
notion of “self-testing” [24], for instance, by proving that
all shared quantum states must be two-qubit Bell states
and/or that all local measurements must feature specific
entangled eigenstates [25,26].

Another important aspect of our construction that must
be discussed is noise tolerance. As such, Theorem 1 clearly
applies only to the exact quantum distribution Py(a, b, c),
1.e., in the noiseless case. The trilocal set being topologi-
cally closed, it is clear that P(a, b, c) must have a certain
(possibly very weak) robustness to noise: when adding a
sufficiently small amount of local noise to PQ(a, b, c), one
should still obtain a quantum distribution that is incom-
patible with any trilocal model. A promising method would
be to consider the qutrit example, the proof of which
involves the Finner inequality that allows, in principle, for
the presence of noise. However, we did not succeed in
obtaining reasonable noise tolerance of our result so far.
Other methods could also help, such as the “inflation”
technique [15] or the finite cardinality of the classical
variables [27,28]. This could provide a nonlinear Bell
inequality violated by our example.

The possibility of generating randomness from quan-
tum nonlocality without inputs is a further interesting
question. In particular, it seems very likely that our
quantum distribution Py (a, b, c) contains some level of
intrinsic randomness. It would be interesting to see
how this randomness could be quantified in a device-
independent manner (still assuming independence of the
sources).
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