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Entanglement and the wave function description are two of the core concepts that make quantum
mechanics such a unique theory. A method to directly measure the wave function, using weak values, was
demonstrated by Lundeen et al. [Nature 474, 188 (2011)]. However, it is not applicable to a scenario of two
disjoint systems, where nonlocal entanglement can be a crucial element, since that requires obtaining weak
values of nonlocal observables. Here, for the first time, we propose a method to directly measure a nonlocal
wave function of a bipartite system, using modular values. The method is experimentally implemented for a
photon pair in a hyperentangled state, i.e., entangled both in polarization and momentum degrees of
freedom.
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A wave function description plays an important role in
quantum theory, while its objective reality gives rise to a
century-long debate [1–6]. Using the technique of weak
measurement that enables one to obtain the weak value of a
pre- and postselected quantum system [7,8], a method of
directly measuring the complex wave function of single
photons was experimentally demonstrated recently [9]. The
technique was subsequently extended to discrete two- [10]
or higher-dimension [11–13] quantum systems and even
mixed states [14,15]. The method was found to have deep
connections to the phase space distributions [16,17] and
sequential measurements [18–20]. It was developed with
strong measurements [21–23] and further applied to mea-
sure matter waves [24,25]. In none of these tasks [26,27]
could the measured wave function be related to two disjoint
systems and thus could not represent nonlocal entangle-
ment. Here, for the first time, we show a direct measure-
ment of a wave function with nonlocal entanglement. We
achieve this by using modular values [28], which enable
one to obtain the weak value of a (nonlocal) product of
observables.
A general wave function jΨi can be written using a basis

jni as jΨi ¼ P
nΨnjni, where Ψn are complex amplitudes.

A projective measurement of jniwould yield only jΨnj2, and
not any phase information, so it was a surprise when
Lundeen et al. [9] showed that using weak values one
can directly measure both the real and imaginary parts ofΨn.
A weak value of an observable O, on a system that is
prepared in a state jψi and postselected to a state jϕi, is
given by Ow ¼ hϕjOjψi=hϕjψi. It is a complex quantity, in
contrast to the expectation value or any of the eigenvalues,

which are always real. The weak value of a projection
operator Pn ¼ jnihnj with a postselection on uniform super-
position jϕi ∝ P

njni yields the complex amplitudes
ψn ∝ ðPnÞw. The standard technique to obtain a weak value,
known as weak measurement, is via an interaction described
by the evolution operator UI ¼ e−igOp, where g ≪ 1 is a
dimensionless coupling constant and p is an operator on
a meter. After the interaction and postselection on the
system, the expectation value hpi and hxi, with x being
an operator conjugate to p, will change according to δp ¼
2gðhp2i − hpi2Þℑ½Ow� and δx ¼ gℜ½Ow�, respectively [29].
Consider the case that our system is composed of two

subsystems, A and B, placed at different locations. The
complete Hilbert space is a tensor product of the two local
Hilbert spaces H ¼ HA ⊗ HB. One can define local bases
for each subsystem jjiA ∈ HA, jliB ∈ HB such that the
basis for the complete system is a tensor product of local
states jni ¼ jj; li ¼ jjiAjliB, with amplitudes Ψj;l given by
the weak value of projection operators Pj;l ¼ PA

j P
B
l .

However, the interaction UI ¼ e−igðPj;lÞp, which is needed
in the standard scheme to obtain ðPj;lÞw, is not physical,
regardless of what p might be, since it requires a nonlocal
Hamiltonian H ∝ PA

j P
B
l . Such a Hamiltonian implies an

instantaneous interaction between distant locations. Thus,
the method described above cannot be applied to this case
and it seems that one cannot directly measure a nonlocal
wave function. This implies a major flaw in the implication
of the direct measurement technique. Apart from the
ongoing discussion regarding the efficiency of the method,
this flaw is related to the fundamental aspects of the idea
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and can render it useless for the most interesting cases.
Without the locality restriction, one can adopt a realistic
description and thus the wave function is redundant. Any
potential application of the method would also be highly
limited due to the pivotal role of entanglement in many
quantum protocols. Here we show that this is not the case,
by introducing a new method and experimentally demon-
strating it, where the weak values are replaced, or rather
augmented, by modular values [28].
Modular values were introduced as an explanation of an

experiment demonstrating the Hardy paradox [30,31],
which involved the weak value of a product, and as a
method to obtain weak values using strong measurement.
Later on, it extended theoretically in several ways [32] and
was also implemented experimentally [33].
Since the (nonlocal) observable we are interested in, Pl;j,

is a product of two (local) observables, the problem boils
down to obtaining the weak value of a product of
observables. This task cannot be done using the standard
weak measurement technique, where the meter evolves
according to a Hamiltonian in which the observable on the
system is replaced by its weak value O → Ow. A way to
achieve this task was initially suggested in [34] and later
realized [35]. Their method relies on a second-order term,
while still requiring the interaction to be weak. A product of
N observables would be obtained from theNth order, so the
scalability of this method poses significant challenges. The
method we use, based on modular values, has the additional
benefit of allowing one to obtain weak values using strong
measurement. In [28], it was shown that a qubit meter,
interacting via an observable O on a pre- and postselected
system, evolves according to the modular value, given by
Om ¼ hϕje−igOjψi=hϕjψi, where g is a coupling constant
of arbitrary size. When the relevant observable is a
projection, the modular value has a close connection to
the weak value ðPnÞm ¼ 1þ sðPnÞw, with s ¼ e−ig − 1.
We set s ¼ −2, which corresponds to a standard exper-
imental setting. In the case of two commuting projectors,
we have

Ψj;l ∝ ðPA
j P

B
l Þw

¼ s−2½ðPA
j þ PB

l Þm − ðPA
j Þm − ðPB

l Þm þ 1�; ð1Þ

where for any single projector on a subsystem there is an
implicit tensor product with an identity operator on the
other subsystem. The first expression in Eq. (1) is implied
by the original method [9], while the second expression
comes directly from the definition of the modular value.
While qubit meters are typically used to obtain modular
values, the projection observable Pj can pertain to a
continuous variable such as the position or velocity of a
particle [36,37], with the indices j, l in Eq. (1) denoting the
continuous property. Thus, the problem of measuring
directly a nonlocal wave function is mapped to directly
measuring the modular values of observables such as

PA
j þ PB

l , which we now show how to accomplish, using
an entangled meter.
Since the meter should interact with both subsystems, it

should also consists of two parts, even though in principle
one can also have a single meter and move it to each
location of the subsystems. After each part interacts with
one subsystem and the system is postselected, the modular
value can be extracted from the final state of the meter by
tomography [28]. The tomography in the last step can be
replaced by a more direct method by setting the meter in an
initial state jΨm

I i ¼ ðj↑↓i þ ϵj↓↑iÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p
, where the

first (second) arrow refers to the part of the meter
interacting with subsystem AðBÞ and ϵ ≪ 1. Then, after

an interaction UI ¼ e−igðP
A
j P

A
↓þPB

l P
B
↑Þ with PA

↓ (PB
↑) a pro-

jection on the part AðBÞ of the meter to the state j↓i (j↑i),
the probabilitiesP1 andP2 of finding the meter in the states
j1i ¼ ðj↑↓i þ j↓↑iÞ= ffiffiffi

2
p

and j2i ¼ ðj↑↓i þ ij↓↑iÞ= ffiffiffi
2

p
,

respectively, are given by

P1 ¼
1

2
þ ϵℜðPA

j þ PB
l Þm þOðϵ2Þ; ð2Þ

P2 ¼
1

2
þ ϵℑðPA

j þ PB
l Þm þOðϵ2Þ: ð3Þ

Thus, to the first order in ϵ, the readout in certain detectors
will be given by the real and imaginary part of the relevant
modular value. To obtain ðPA

j Þm and ðPB
l Þm, one can set the

meter initially in a product state and look at the probability
of finding states, similar to j1i and j2i, for each part of the
meter separately. Alternatively, one can replace in the
interaction UI , a projector on one part with an identity
operator (for more details see the Supplemental
Material [38]).
Note that ϵ ≪ 1 does not imply the procedure is a weak

measurement in the sense that the interaction parameter g
does not have to be small. One can set ϵ to be large as well
and still reconstruct weak values from Eq. (1), which means
using strong measurements. Indeed, an alternative to the
direct measurement technique, based on strong measure-
ment, was theoretically proposed [21,22] and experimen-
tally demonstrated [23]. That technique could also be
interpreted using modular values. In our scheme, we choose
ϵ ≪ 1, so using Eqs. (2) and (3), the complex amplitudes of
a wave function with nonlocal entanglement, appear
naturally in the measurement results.
The general scheme of our method is shown in Fig. 1 and

the experimental setup is shown in Fig. 2. More details are
given in the Supplemental Material [38]. In the experiment,
we have measured the wave function of the polarization of
two photons using their paths’ degree of freedom as a
meter, such that the state j↑i (j↓i) for a part of the meter
implies that the photon went through the right (left) arm.
We used hyperentangled photon pairs such that both the
polarization and path states are entangled between the
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photons, while there is no entanglement, initially, between
the polarization and path [39]. The probabilities in
Eqs. (2) and (3) are obtained by Franson interference.
Since the initial state of the meter is entangled, we detect
product states j1̃i ¼ ðj↑i þ j↓iÞðj↑i þ j↓iÞ=2 and j2̃i ¼
ðj↑i þ ij↓iÞðj↑i þ j↓iÞ=2 to obtain P1 and P2,
respectively.
We start by demonstrating our method for a single

component of the state. We prepare the system in a
maximally entangled state 1=

ffiffiffi
2

p ðjHHi þ eiθjVViÞ with
an adjustable phase θ ∈ f−π; πg and postselect the system
to ðjHi þ jViÞðjHi þ jViÞ=2, where jHi and jVi denote
the horizontal and vertical polarization, respectively. The
relevant modular values and the probability amplitude are
shown in Fig. 3. The method yields the expected values for
jθj≲ π=2. For jθj ≃ π, where the initial state is nearly
orthogonal to the postselection, the modular value diverges,
as does the weak value, while the probability amplitude
does not. The relation in Eq. (1) still holds since the
proportionality constant in the first expression vanishes

accordingly. However, higher orders in Eqs. (2) and (3)
cannot be neglected anymore. This problem can be solved
by choosing a different postselection, for example
ðjHi þ jViÞðjHi − jViÞ=2. Another solution would be to
make ϵ smaller if the interferometer is sufficiently ideal
with high interference visibility.
In Fig. 4 we present the complete probability amplitudes

that are measured using our method for a number of states.
In our case, the three modular values used to measure the
single component, as shown in Fig. 3, are enough to obtain
all the components, since PH ¼ I − PV , with I as the
identity matrix, and ðcI þOÞm ¼ scðOÞm, for any observ-
ableO and number c. A system of dimension n would have
n − 1 independent projectors, so for a general bipartite
system composed of subsystems of dimensions m and n,
one needs ðm − 1Þ þ ðn − 1Þ single-system modular values
and ðm − 1Þ × ðn − 1Þ two-system combinations, i.e.,
products of projectors on the separate systems. Adding

(a)

(b)

(c)

FIG. 1. Measurement of a pre- and postselected system, using
qubit meters. (a) A logic circuit diagram shows a single-qubit
meter prepared in a state j↑xi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

and a single
system prepared in a state jψi. Then, a controlled gate modifies
the state of the meter, depending on the state of the system and,
finally, if the system is found in a state jϕi, the meter is readout.
(b) Experimental scheme to realize the circuit in (a) using the path
of a photon as a meter and its polarization as the system [half-
wave plate (HWP), quarter-wave plate (QWP), polarized beam
splitter (PBS)]. (c) The logic circuit diagram for the case of a
bipartite system (two spatiality separated qubits) is composed
from similar components to the single-qubit case shown in (a) and
(b). The main difference is that the system can be initially
entangled and thus the meter might have to be entangled as well.

FIG. 2. Experimental setup. (Inset) A β-BaB2O4 (BBO)
crystal pumped by a vertically polarized ultraviolet laser. A
spherical mirror reflects the photon pairs, which are emitted
due to a degenerate spontaneous parametric down-conversion,
and the pump beam to a second pass through the crystal, after
passing a QWP (or λ=4) with its optical axis orienting at 45°.
Choosing four points in the entanglement ring yields a photon
pair entangled both in path and polarization, which enters the
main setup shown in the main panel. The up path (green)
stands for the first photon (labeled A), while the bottom path
(red) represents the second one (labeled B); they are vertically
separated around 5 mm. For each photon, they have two
spatially separated path modes (left and right with around one
meter from each other) and two polarization modes (horizontal
and vertical); the former is taken as the meter and the latter as
the system. For preparing the initial meter state, we use two
neutral optical attenuators (ATTs) to precisely reduce the
relative intensity of relevant modes. Half- and quarter-wave
plates are used to manipulate the polarization of each path
independently and glass compensators (COs) are used to offset
the phase difference. The two paths of each photon are
combined in one unpolarized beam splitter (BS). Glass plates
(GPs) are used to introduce a controllable phase so different
path states can be measured. The PBS postselects the final
polarization state. After spectrum filters, the photons are
collected by four single-mode fibers and guided to four
avalanche single-photon detectors (D-1,2,3,4).
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these numbers and multiplying by 2, for real and imaginary
parts, yields exactly the number of independent parameters
2m × n − 2 in a state of dimension n ×m. For comparison,
we show in Fig. 4 the reconstructed density matrices
obtained by standard tomography, requiring 16 different
measurements for each state. Our Letter is limited to pure
states, and reconstructing mixed states will necessarily be
more resource intensive.
In addition to the main result, our method illuminates an

aspect of the direct measurement technique, which is
sometimes overlooked or misunderstood. Essentially, it
demonstrates that the ability to obtain the probability
amplitude is due to weak values rather than weak mea-
surements. It is the postselection that enables us to achieve
the task and not necessarily a small interaction strength.

While this distinction could be inferred directly from the
theoretical derivation, supporting it by experimental results
can help clarify this issue, as well as the discussion
regarding the efficiency of various techniques, especially
with regards to the supposed benefits of small interactions.
More importantly, extending the method of direct meas-

urement to scenarios having nonlocal entanglement will
allow using it to study, theoretically and experimentally,
many ideas, such as steering, quantum discord, entangle-
ment entropy, etc. The extended method could be incorpo-
rated into quantum protocols for which the original method
was not applicable due to the locality constraint on the
measured wave function. Since it is not yet clear where one
would use the original method, and how, we can only
speculate regarding concrete applications of our method. It
is possible that some future technology would require
obtaining the wave function of a pure state, which is
nonlocally entangled. The context can be information
transfer, executing a distributed computational task,

(a)

(b)

(c)

(d)

FIG. 4. Experimentally measured probability amplitudes. The
upper part of each panel shows the directly measured probability
amplitudes (Exp). The theoretical values (Th) refer to the state in
the case of an ideal preparation, which in each panel is given
by (a) jΨi¼ðjHHiþjVViÞ= ffiffiffi

2
p

, (b) jΨi¼ðjHHiþijVViÞ= ffiffiffi
2

p
,

(c) jΨi¼ðjHiþjViÞðjHi−ijViÞ=2, and (d) ½0.8jHHi−
0.6ijHVi − 0.8jVHi − 0.6ijVVi�= ffiffiffi

2
p

. The lower part of each
panel shows the reconstructed density matrix (colored bars) for
each state, obtained by standard tomography. Errors are estimated
through Monte Carlo simulations considering the counting noise.

(a)

(b)

FIG. 3. Demonstration of the method for the state
1=

ffiffiffi
2

p ðjHHi þ eiθjVViÞ. (a) Modular values (upper, for real
part, and lower, for imaginary part): To avoid clutter, we only
show the corresponding values for the projector PA

V, P
B
V , and

PA
V þ PB

V . (b) The normalized probability amplitude for the
corresponding component ΨVV of the state. While all the real
parts of modular values in (a) exhibit constant value, the
oscillations in both the real and imaginary part of ΨVV emerge
when performing the normalization to the whole state. In both (a)
and (b), solid lines are values derived from a perfectly prepared
state, dashed lines are predicted results taking into account the
higher order of ϵ (¼ 0.2 in our case), and markers are exper-
imental results. The error bars (calculated through Monte Carlo
simulations considering the counting noise) are smaller than the
point size.
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cryptography protocols, etc. Then, one might find that our
method is required for an efficient implementation of such
technology.
In conclusion, we have experimentally demonstrated a

direct measurement of nonlocal wave functions for the first
time. The task is achieved by using modular values of a sum
of observables that yield the weak values of nonlocal
observables. The method sheds new light on the previous
technique and extends it to be applicable for an important
scenario: the existence of nonlocal entanglement. We
anticipate that our results can inspire the direct measure-
ment of multipartite states in some other quantum systems
where weak values are accessible at present, such as atoms
[40], neutrons [41], superconductors [42], etc. Introducing
sequential measurements [18–20] into our method and
developing it for directly measuring mixed states should be
worthy of further studies. The simplicity of the theoretical
derivation and the demonstrated feasibility of the exper-
imental technique can make the new method a powerful
tool for studying the nature of quantum mechanics and
harnessing it.
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