
 

Finite Speed of Quantum Scrambling with Long Range Interactions

Chi-Fang Chen 1,2 and Andrew Lucas1,3,*
1Department of Physics, Stanford University, Stanford, California 94305, USA

2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
3Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

(Received 15 August 2019; published 20 December 2019)

In a locally interacting many-body system, two isolated qubits, separated by a large distance r, become
correlated and entangled with each other at a time t ≥ r=v. This finite speed v of quantum information
scrambling limits quantum information processing, thermalization, and even equilibrium correlations. Yet
most experimental systems contain long range power-law interactions—qubits separated by r have potential
energy VðrÞ ∝ r−α. Examples include the long range Coulomb interactions in plasma (α ¼ 1) and dipolar
interactions between spins (α ¼ 3). In one spatial dimension, we prove that the speed of quantum scrambling
remains finite for sufficiently large α. This result parametrically improves previous bounds, compares
favorably with recent numerical simulations, and can be realized in quantum simulators with dipolar
interactions. Our new mathematical methods lead to improved algorithms for classically simulating quantum
systems, and improvebounds onenvironmental decoherence in experimental quantum informationprocessors.
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Almost five decades ago, Lieb and Robinson proved that
spatial locality implies the ballistic propagation of quantum
information [1]. Intuitively defining a “scrambling time”
tsðrÞ by the time at which an initially isolated qubit can
significantly entangle with another a distance r away,
locality implies that tsðrÞ≳ r. This result has deep impli-
cations in physics. Practical tasks such as information
processing [2] are possible due to a lack of rapid
decoherence with a noisy environment, thermalization
occurs locally [3] and equilibrium correlation functions
fall off sufficiently rapidly [4]. If quantum information can
only propagate with a finite speed, a classical computer can
efficiently approximate early time quantum dynamics [5].
Despite the exponentially large Hilbert space in many-body
quantum systems, quantum information processors with
short-range interactions cannot become entangled with an
infinite environment arbitrarily quickly [6,7]. Lastly, emer-
gent spacetime locality arising from microscopic quantum
mechanics without manifest relativistic invariance may
play a crucial role in understanding quantum gravity
through the holographic correspondence [8].
However, the Lieb-Robinson theorem is not useful for

a typical quantum information processor. A qubit in an
experimental device is usually a spin or atomic degree of
freedom, or Josephson junction. Such objects generically
interact with long range interactions, and until now,
whether locality of quantum scrambling necessarily per-
sists in the presence of long range interactions has remained
unclear. In 2005, Hastings and Koma used the canonical
Lieb-Robinson theorem to prove that when α > d, tsðrÞ ≳
log r [4]; more recently, this bound has been improved for
α > 2d to tsðrÞ≳ rðα−2dÞ=ðα−dÞ [9–12]. If such bounds were

tight, then insulating a quantum processor from its envi-
ronment would be absolutely crucial. Yet numerical sim-
ulations cast into doubt the tightness of these formal
bounds: two groups have recently shown that ts ≳ r in
one-dimensional models with α≳ 1.5 [13] or even α > 1
[14], depending on microscopic details.
In this Letter, we prove that tsðrÞ≳ r whenever α > 3, in

all one-dimensional models with power law interactions.
Our dramatic improvement over existing results is made
possible by new mathematics [15]: identities for unitary
time evolution expanded as a sum over flexibly chosen
equivalence classes of sequences of couplings.
Our work has clear physical consequences. Scrambling

in dipolar spin chains [16,17] is hardly faster than in a spin
chain with nearest neighbor interactions; hence, it should
be far more efficient to simulate numerically [5,10]. Nor
does decoherence seriously limit the quantum information
processing capabilities of a nuclear spin chain, no matter
how large the environment. Quantum thermalization nearly
proceeds as if interactions were local, as in typical
theoretical models of scrambling [18,19].
Formal statement of theorem.—We now formally restate

our theorem in a mathematically precise language. For
simplicity, we will assume a one-dimensional chain of
qubits (two-level systems); the generalization to all finite-
dimensional quantum models in one dimension is con-
tained in the Supplemental Material [20]. Thus, the Hilbert
space is given by

H ¼ ⨂
i∈Z

Hi ¼ ⨂
i∈Z

C2: ð1Þ
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Even though H is (uncountably) infinite dimensional, our
bound on scrambling will reduce to a calculation on a finite
segment of the chain.
The set of Hermitian operators on H forms a real vector

space B. Let the Uð2Þ generators fI; σx; σy; σzg be our
complete basis of Hermitian operators on Hi; B is spanned
by tensor products fI; σi; σiσj; � � �g. Here and below, we
can use a “bra-ket” notation with parentheses to emphasize
that Hermitian operators on H are vectors in B. We define
kAk as the maximal eigenvalue of A, the conventional
operator norm [1].
We consider two-local Hamiltonians: i.e., those which

may be expressed as a sum of terms that act on either a
single site, or on two sites:

H ¼
X

i∈Z
Hi þ

X

i<j

Hij: ð2Þ

We define the exponent α of long range interactions by
demanding that

kHijk ≤
h

ji − jjα : ð3Þ

Let i < j be integers. We define the scrambling time
tδsðrÞ to be the largest time such that

sup
A≤i;B≥j

k½A≤iðt0Þ;B≥j�k
kA≤ikkB≥jk

< δ; for 0< jt0j< tδsðji− jjÞ; ð4Þ

where A≤i denotes a bounded operator that acts trivially on
any site k > i and B≥j acts trivially on any site k < j. While
A≤i can act nontrivially on an infinite number of sites, we
demand B≥j acts nontrivially only on a finite number of
sites [20]. Lastly, the operator A≤iðt0Þ ≔ eiHt0A≤ie−iHt0

denotes a Heisenberg time-evolved operator. The definition
of scrambling given in Eq. (4) bounds the growth in
observable correlation functions, and the generation of
entanglement between distant qubits [6,7]. We are now
ready to state our main result:
Theorem 1.—For every 0 < δ < 2, there exists a con-

stant 0 < Kα < ∞ for which

tδsðrÞ ≥ Kα ×

8
<

:

rα−2 2 < α < 3

rðlog rÞ−2 α ¼ 3

r α > 3

: ð5Þ

Sketch of proof.—We now outline the proof of
Theorem 1; details are found in Ref. [20]. For simplicity,
we set i ¼ 1 and j ¼ r in Eq. (4). Wewrite A1 and Br below
as shorthand for A≤1 and B≥r.
In the Heisenberg picture of quantum mechanics, oper-

ators evolve according to ∂tO ¼ i½H;O�. Just like the
Schrödinger equation, this is linear: we write ∂tjOÞ¼LjOÞ
where L, commutation with HamiltonianH, generates time

translations on the space of operators. The time evolved
operator jOðtÞÞ ¼ eLtjOÞ is nothing more than a “rotated”
operator of the same norm. We define the projection Pr
onto the hyperplane Σr of B of all operators that act
nontrivially on the support of Br. This is a convenient
object that bounds scrambling by the evolution of jA1Þ into
Σr as a function of time:

k½A1ðtÞ; Br�k
2kA1kkBrk

≤
kPreLtjA1Þk

kA1k
: ð6Þ

In the “canonical” form of the Lieb-Robinson theorem
popularized by Hastings and Koma [4], one uses the
triangle inequality ∂tk½A1ðtÞ; Br�k ≤ k½A1ðtÞ; ½H;Br��k.
Yet most of the terms on the right-hand side of this
inequality sum do not contribute to k½A1ðtÞ; Br�k: they
correspond to shifts in A1ðtÞ that cannot grow kPrjA1Þk. We
emphasize that this holds even though the operator norm
kA1ðtÞk is not the “length” of the vector jA1ðtÞÞ.
Instead, we write

eLtjA1Þ ¼
X∞

n¼0

tn

n!

X

X1;…;Xn

LXn
� � �LX1

jA1Þ; ð7Þ

where Xi corresponds to a term in the Hamiltonian, e.g.,
Lσx

1
σx
2
¼ i½σx1σx2; ·�. PrLXn

� � �LX1
jA1Þ is only nonzero if a

subsequence of L’s form a path from 1 to r. Our main
technical development is expanding PreLtjA1Þ in a con-
trolled way: we classify all sequences with a path from 1 to
r by a relatively small number of equivalence classes Γ.
Generalizing the interacting picture, we obtain the follow-
ing identity:

Pr

X

Γ
σðΓÞ

Z
t

0

dtl

Z
tl

0

dtl−1 � � �
Z

t2

0

dt1eLðt−tlÞLΓ
le

L̃Γ
lðtl−tl−1Þ

� � �eL̃Γ
2 ðt2−t1ÞLΓ

1e
L̃Γ
1 t1 jA1Þ¼PreLtjA1Þ: ð8Þ

Here Γ is a label for l nontrivial sequential steps LΓ
j and the

time-ordered integral can intuitively be interpreted as the
possible times t > tl > � � � > t1 at which “critical” steps in
the sequence of LXi

occurred. In fact, the emergence of the
integral over l ordered times is analogous to the time
ordered integrals which arise in time dependent perturba-
tion theory. According to rules we will shortly state, σðΓÞ ¼
�1 is assigned to avoid double counting so that the terms
match up across the equality. Applying the triangle inequal-

ity to (8), and noting eL̃
Γ
j t is norm preserving, which resums

superfluous terms in the series expansion (7):

kPreLtjA1Þk
2kA1k

≤
X

Γ

tl

l!

Yl

j¼1

kLΓ
j k; ð9Þ

where
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kLΓ
j k ≔ sup

O

kLΓ
jOk

kOk : ð10Þ

The physical content of Eq. (9) is interpreted as follows.
If we can define an equivalence relation on sequences of
couplings such that Eq. (8) holds, then only the nontrivial
steps LΓ

j need to be counted in the commutator bound (4).
Every other term in the sequence L̃Γ

i that shows up in the
intermediate unitary evolution does not grow kPreLtjA1Þk.
In general, the choice of Γ is quite flexible. For the

Hamiltonian (2), our construction is depicted in Fig. 1.
We start by regrouping all Lmn ¼ i½Hmn; ·� by their scale
q ≈ blog2 jm − njc (if 1 ≤ m, n ≤ r; the exact formula is
in [20]). We write H as a sum of one-dimensional
Hamiltonians, each consisting of terms of a given scale.
At scale q ¼ 0 (q > 0), these blocks form one-dimensional
model of nearest (next-nearest) neighbor interactions
between blocks of sites, see Fig. 1(a). Which couplings
are grouped into which blocks is depicted in Fig. 1(b).
At scale q, we denote the block (q, k) to be the kth leftmost
block in Fig. 1, starting with k ¼ 0. We denote Lðq;kÞ ¼
i½Hðq;kÞ; ·�, where

Hðq;kÞ ¼
X

ði;jÞ in block ðq;kÞ
Hij: ð11Þ

We now rewrite Eq. (7) as

PreLtjA1Þ ¼
X∞

n¼0

tn

n!

X

ðqn;knÞ;…;ðq1;k1Þ
PrLðqn;knÞ � � �Lðq1;k1ÞjA1Þ:

ð12Þ

The key observation is that any sequence above Eq. (12)
that made it to r must traverse forward a distance ≳r= log r
on at least one of the blog2 rc scales q (Fig. 2). For any
sequence of Lðqi;kiÞ ’s in Eq. (12), we can read off the
q-forward subsequence Pr � � �Lðq;kNÞ � � �Lðq;k1Þ � � � jA1Þ,
kN > � � � > k1 by recursively finding the next ðq; kjÞ that
exceeds the largest k so far. If N > Nq ∼ 2−qr=log2r, then
the sequence is “long.” We organize equivalence classes Γ
by the nonempty subset of the integers f0; 1;…; blog2 rcg
that corresponds to the scales on which a long path from 1
to r exists.
For example, suppose a sequence in Eq. (12) at scales q0

contains a long subsequence. Then it would be accounted
by the Γ specified by the first Nq0 terms of the forward
subsequence 0 ≤ k1 < k2 < � � � < kNq0

< � � �. In Eq. (8),

we take σðΓÞ ¼ 1, LΓ
m ¼ Lðq;kmÞ,

L−q ¼ L −
X

k

Lðq;kÞ ð13Þ

and

L̃Γ
m ¼ L−q þ

X

k≤km−1

Lðq;kÞ; ð14Þ

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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-110 2 43 5 76 8 109 11 1312 14 1615-1 17 18

(a) (b)

FIG. 1. Couplings Lij (i < j) can be broken up into the scale on which the coupling acts in a unique way. Intuitively, the scale q of a
coupling is approximately blog2ðj − iÞc. Each scale with different values of q is denoted with a different color: from large (orange) to
short (purple). In this example, we study k½A1ðtÞ; B16�k, and sites n obeying n < 1 or n > 16 are grouped in with these end sites when
combining couplings. (a) Each scale or color would form a chain; (b) a more precise presentation. This L-shaped tiling ensures that the
sum of each q block scales as 2−qðα−2Þ and can be extended to arbitrary large q.
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where the “superfluous” terms L̃Γ
m are exactly those terms

that do not change the q-forward subsequence. To be
precise, the terms allowed between LΓ

m ¼ Lðq;kmÞ and
LΓ
m−1 ¼ Lðq;km−1Þ are any Lðq0;k0Þ with q ≠ q0, or any

Lðq;k00Þ with k00 ≤ km−1. The former are allowed because
each scale q is treated separately; the latter because they
are, by construction, not traversing forward.
In general, it may be the case that a single sequence in

Eq. (12) contains multiple long paths on m distinct
scales. The equivalence class Γ is then labeled by the m
long sequences at m distinct scales. We generalize the
construction of the previous paragraph, and set σðΓÞ ¼
ð−1Þ1þm. The inclusion-exclusion principle then guaran-
tees that Eq. (8) does not overcount the sequences which
have multiple long subsequences, as in Fig. 2.
In fact, in order to prove Eq. (5), we have improved this

argument in a few ways. (i) We tune Nq so that the
contribution of all scales q to Eq. (9) is comparable. (ii) We
demand that all long paths must increase the rightmost site
on which the operator acts. We then evaluate Eq. (9), using
that kLðq;kÞk≲ 2−qðα−2Þ. Our results are summarized below.
When α > 3, the dominant contribution to kPeLtjA1Þk

comes from short length scales: a large fraction of the path
from1 to r often occurs in nearest neighbor hops. Scrambling
proceeds as if interactions were nearest neighbor alone.
The operator jA1ðtÞÞ is largely supported on lattice sites
x < vt, where v is a finite speed of quantum scrambling.
When α < 3, the dominant contribution to kPeLtjA1Þk

comes from few long hops across 1 to r. Counting the
number of such long hops, we find tsðrÞ ¼ Oðrα−2Þ.

If α ¼ 3, we find that all scales are equally important,
which leads to tsðrÞ ¼ Oðr= log2 rÞ.
A final comment is that if the Hamiltonian is frustrated,

we may replace α → α − 1 in Theorem 1: namely, the linear
light cone persists until α ¼ 2. A formal definition of
frustration is that the maximal eigenvalue of Hðq;kÞ is
comparable to its magnitude in a randomly chosen state.
This property is expected to hold for a self-averaging
Hamiltonian, where each Hij is multiplied by a zero-mean
random variable. Frustration does not hold in a Hamiltonian
where all 2-local terms Hij in the Hamiltonian commute
(e.g., Hij ¼ σziσ

z
j=ji − jjα).

Outlook.—We conclude the Letter with a discussion of the
implications of our theorem. Recall that our new mathemati-
cal methods led to dramatic improvements over existing
literature, where the previous optimal bound on scrambling
in one-dimensional systems was tsðrÞ ≳ rðα−2Þ=ðα−1Þ for
α > 2 [10]. In fact, for any α > 3, the speed of quantum
scrambling is finite: entanglement [6,7] and quantum state
transfer [2] proceed at a finite rate, and thermalization largely
mimics that of a locally interacting system.
Our results for frustrated systems are very similar to the

numerical simulations of Ref. [13], where it was argued that
a finite speed of scrambling arises for α ≳ 1.5 in a model
with time-dependent random Hamiltonian. However, in
another model with fixed Hamiltonian [14], it was found
that α ≳ 1 marked the onset of the finite scrambling
speed. We conjecture that Eq. (5) holds with α → α − 1
(hence, the light cone persists to α ¼ 2) for all models,
including those which are not (by our definition) frustrated,
whenever the operators in Eq. (4) act on a single site. It
would be interesting if this can be proved rigorously.
The techniques developed in this Letter may generalize

to other important problems in quantum information
dynamics, including entanglement growth and quantum
scrambling in finite temperature thermal ensembles, where
the speed of quantum scrambling averaged over the thermal
ensemble may depend on temperature [21]. We also hope to
generalize our main theorem to any spatial dimension d.
Lastly, we have also used similar techniques to constrain
models of holographic quantum gravity [15]. Given the
recent explosion of interest in realizing analog black holes
in quantum simulators [22,23], our methods will constrain
which experimental systems have the potential to achieve
this ambitious goal.
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