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We describe a protocol for cross-platform verification of quantum simulators and quantum computers.
We show how to measure directly the overlap Tr½ρ1ρ2� and the purities Tr½ρ21;2�, and thus a fidelity of two,
possibly mixed, quantum states ρ1 and ρ2 prepared in separate experimental platforms. We require only
local measurements in randomized product bases, which are communicated classically. As a proof of
principle, we present the measurement of experiment-theory fidelities for entangled 10-qubit quantum
states in a trapped ion quantum simulator.
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There is an ongoing effort to build intermediate scale
quantum devices involving several tens of qubits [1].
Engineering and physical realization of quantum computers
and quantum simulators are being pursued with different
physical platforms ranging from atomic and photonic to
solid-state systems. Recently, verification procedures [2],
such as randomized and cyclic benchmarking [3–7], and
direct fidelity estimation [8–10] have been developed,
which allow one to compare an implemented, noisy
quantum process (or state) with a known, theoretical target.
A key challenge is the direct comparison of a priori
unknown quantum states generated on two devices at
different locations and times by running a specific quantum
computation or quantum simulation, i.e., the cross-platform
verification of these experimental quantum devices by
means of a fidelity measurement. This will become
particularly relevant when we approach regimes where
eventually a comparison with classical simulations
becomes computationally hard and thus a direct compari-
son of quantum machines is needed.
Our aim is the development of protocols for cross-

platform verification by measuring the overlap of quantum
states produced with two different experimental setups,
potentially realized on very different physical platforms,
without any prior assumptions on the quantum states
themselves. For two pure quantum states, the relevant
fidelity is defined as the overlap F pureðjψ1i; jψ2iÞ ¼
jhψ1jψ2ij2, where jψ1i and jψ2i denote pure states in
Hilbert spaceH on devices 1 and 2, respectively. For mixed
states we consider the fidelity [11]

Fmaxðρ1; ρ2Þ ¼
Tr½ρ1ρ2�

maxfTr½ρ21�;Tr½ρ22�g
; ð1Þ

which measures the overlap between density matrices ρ1
and ρ2, respectively, normalized by their purities. Here

ρ1 (ρ2) can refer to the total system, or a subsystem of
device 1 (2). Fmax fulfills the axioms for mixed state
fidelities imposed by Josza [12]. It can thus be used to
verify that, and to which degree, two quantum devices have
prepared the same quantum state. We note that the
performance of quantum devices has been previously
investigated by comparing outcome distributions of a
selection of observables [13,14]. In contrast, we are
interested here in specifically measuring the fidelity (1)
of the entire density matrices ρ1 and ρ2.
The protocol discussed below infers the cross-platform

fidelity Fmax from statistical correlations between random-
ized measurements performed on the first and second
device (see Fig. 1). While in previous work we obtained
Rényi (entanglement) entropies, or purities, of reduced
density matrices Tr½ρ21;2�, for single systems from random-
ized measurements [15–17] [see the denominator of
Eq. (1)], we are here interested in measuring the overlap
between density operators of devices 1 and 2 from such
protocols [see numerator of Eq. (1)]. In principle, Fmax can
be determined from full quantum state tomography (QST)
of systems 1 and 2 [10,18–22]. However, due to the
exponential scaling with the (sub)system size [19], this
approach is limited to only a few degrees of freedom [18].
Alternative efficient tomographic methods require a spe-
cific structure, or a priori knowledge of the system of
interest [10,21–23]. In contrast, as demonstrated below, the
present protocol scales, although exponentially, much more
favorably with the (sub)system size, allowing practical
cross-platform verification for (sub)systems involving tens
of qubits on state-of-the-art quantum devices [24].
In the following, we first describe the protocol, followed

by an analysis of statistical errors and the required number
of experimental runs. Using the data taken in the context of
Ref. [28], we demonstrate, as a proof of principle, the
measurement of experiment-theory fidelities of quantum
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states of 10 qubits prepared via quench dynamics on a
trapped ion quantum simulator. Finally, we present experi-
ment-experiment fidelities of quantum states prepared
sequentially on the same experimental platform.
Protocol.—As illustrated in Fig. 1, we consider two

quantum devices consisting of N1 and N2 spins (d-level
systems) realized on different physical platforms S1 and
S2, and prepared with quantum operations U1 and U2 in
two quantum states described by the density matrices ρ1
and ρ2, respectively. We denote the reduced density
matrices as ρi;Ai

¼ TrSinAi
ðρiÞ for (sub) systems Ai ⊆ Si

(i ¼ 1, 2) of identical size NA1
¼ NA2

≡ NA. The associ-
ated Hilbert space dimension is DA ¼ dNA .
We apply first to both ρ1;A1

and ρ2;A2
the same random

unitary UA ¼⊗NA
k¼1 Uk, defined as a product of local

random unitaries Uk acting on spins k ¼ 1;…; NA (see
Fig. 1). Here, the Uk are sampled independently from a
unitary 2-design [29,30] defined on the local Hilbert space
Cd and sent via classical communication to both devices
(red arrows in Fig. 1). We now perform for the first and
second system projective measurements in a standard
(computational) basis jsAi≡ js1;…; sNA

i. Here, sA denotes
a string of possible measurement outcomes for spins
k ¼ 1;…; NA. Repeating these measurements for fixed
UA provides us with estimates of the probabilities

PðiÞ
U ðsAÞ ¼ TrAi

½UAρi;Ai
U†

AjsAihsAj� for i ¼ 1, 2 (see
Fig. 1). In a second step, this procedure is repeated for
many different random unitaries UA.
Finally, we estimate the density matrix overlap

Tr½ρ1;A1
ρ2;A2

� from second-order cross-correlations
between the two platforms via

Tr½ρi;Ai
ρj;Aj

� ¼ dNA

X

sA;s0A

ð−dÞ−D½sA;s0A�PðiÞ
U ðsAÞPðjÞ

U ðs0AÞ; ð2Þ

with i ¼ 1, j ¼ 2. This is proven in Supplemental Material
[31], Appendix A, using the properties of unitary 2-
designs, thus generalizing [17] to cross-platform settings.
Here, … denotes the ensemble average over random
unitaries of the form UA. The Hamming distance
D½sA; s0A� between two strings sA and s0A is defined as
the number of spins where sk ≠ s0k, i.e., D½sA; s0A�≡
jfk ∈ f1;…; NAgjsk ≠ s0kgj. The purities Tr½ρ21;A1

� and
Tr½ρ22;A2

� for the first and second subsystem are obtained
by setting in Eq. (2) i ¼ j ¼ 1 and i ¼ j ¼ 2, respectively,
i.e., as second-order autocorrelations of the probabilities

PðiÞ
U ðsAÞ and PðiÞ

U ðs0AÞ [17,28].
We emphasize that the above protocol to measure the

cross-platform fidelity of two quantum states requires only
classical communication of random unitaries and measure-
ment outcomes between the two platforms, with the
experiments possibly taking place at very different points
in time and space. In its present form, the protocol requires,
or assumes, no prior knowledge of the quantum states.
These states can be mixed states, and refer to subsystems,
allowing in particular a comparison of subsystem fidelities
for various sizes. We note that our protocol can be used to
perform fidelity estimation towards known target theoreti-
cal states, as an experiment-theory comparison (see below).
In this setting, and when the “theory state” is pure, direct
fidelity estimation protocols have been developed [8,9],
that can be more efficient for certain well-conditioned
states, which are supported on a small number of multiqubit
Pauli operators.
Scaling of the required number of experimental runs.—

In practice, a statistical error of the estimated fidelity arises
from a finite number of projective measurements NM
performed per random unitary and a finite number NU
of random unitaries used to infer overlap and purities via
Eq. (2). Experimentally relevant is, therefore, the scaling of
the total number of experimental runs NMNU (the meas-
urement budget), which are required to reduce this stat-
istical error below a fixed value ϵ, for NA qubits. In
addition, there is the optimal allocation of resources, NU
and NM, for a given measurement budget NMNU.
In Fig. 2 we present numerical results for the average

statistical error as a function of NM and NU, and infer the
scaling of the measurement budget with (sub)system size
NA. For simplicity, we assume that the target fidelity

FIG. 1. Fidelity estimation with randomized measurements. We
present a protocol to measure the fidelity Fmaxðρ1;A1

; ρ2;A2
Þ of

two quantum states described by (reduced) density matrices
ρi;Ai

¼ TrSinAi
½ρi� (i ¼ 1, 2). On two platforms S1 and S2, the

quantum states ρ1 and ρ2 are prepared with quantum operations
U1 and U2, respectively. Randomized measurements are per-
formed on both platforms in (sub)systems A1 ⊆ S1 and A2 ⊆ S2

of size NA, implemented with the same local random unitaries
U1 ⊗ … ⊗ UNA

which are shared via classical communication
(red arrows). From statistical cross-correlations (autocorrelations)

of outcome probabilities PðiÞ
U ðsAÞ (i ¼ 1, 2), the overlap

Tr½ρ1;A1
ρ2;A2

� (the purities Tr½ρ2i;Ai
�) and thus Fmaxðρ1;A1

; ρ2;A2
Þ

are inferred (see text).
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Fmaxðρ1;A1
; ρ2;A2

Þ for the two states ρ1;A1
and ρ2;A2

is known
and analyze the scaling of the statistical error
j½Fmaxðρ1;A1

; ρ2;A2
Þ�e − Fmaxðρ1;A1

; ρ2;A2
Þj of an estimated

fidelity ½Fmaxðρ1;A1
; ρ2;A2

Þ�e. Focusing on experimentally
relevant system sizes, we simulate experiments by applying
NU random unitaries to ρ1;A1

and ρ2;A2
and sample

independently NM projective measurements from each
state. We then infer an estimation ½Fmaxðρ1;A1

; ρ2;A2
Þ�e of

the fidelity Fmaxðρ1;A1
; ρ2;A2

Þ using Eq. (2), and calculate—
from many of these numerical experiments—the average
statistical error j½Fmaxðρ1;A1

; ρ2;A2
Þ�e − Fmaxðρ1;A1

; ρ2;A2
Þj.

In Fig. 2 we concentrate on the case where the quantum
states ρ1;A1

¼ ρ2;A2
¼ ρA on the two platforms are identical;

i.e., the exact fidelity equals FmaxðρA; ρAÞ ¼ 1 (for the
general case, see Appendix C [31]).
In Figs. 2(a) and 2(b), the average statistical error

j½FmaxðρA; ρAÞ�e − 1j is shown as a function of NM for a
system of NA ¼ 8 qubits (d ¼ 2) and various NU and for
two very different types of states ρA: (a) pure product states
(PP) and (b) pure (entangled) Haar random states (PR)
which are obtained by applying a Haar random unitary to a
pure product state [31]. Our numerical analysis shows that,
in the regime NM≲DA and NU≫1, j½FmaxðρA;ρAÞ�e−1j∼
1=ðNM

ffiffiffiffiffiffiffi
NU

p Þ. For unit target fidelity, the optimal allocation
of the total measurement budget NUNM is thus to keep NU
small and fixed [38].
Fixing NU ¼ 100, we display in Fig. 2(c) the scaling of

the number of projective measurements NM per unitary
required to determine the fidelity FmaxðρA; ρAÞ up to an
average statistical error j½FmaxðρA; ρAÞ�e − 1j ≤ ϵ below
ϵ¼0.05. We find a scaling NM∼2bNA with b¼0.8�0.1
for PP and b ¼ 0.6� 0.1 for PR states, which persists for
tested ϵ ¼ 0.02;…; 0.2. The fidelity estimation of PR
(entangled) states is thus less prone to statistical errors

which we attribute to the fact that fluctuations across
random unitaries are reduced due to the mixedness of
the subsystems. A similar scaling, with larger prefactor, is
found for a mixed random state (MR), obtained from
tracing out 3 qubits of a random state of NA þ 3 qubits.
This is directly related to the smaller overall magnitude of
numerator and denominator of the fidelity for mixed states
[see Eq. (1)].
We note that the optimal allocation of NU versus NM for

given NUNM depends on the quantum states, in particular,
their fidelity and the allowed statistical error ϵ, and is thus
a priori not known. In practice, an iterative procedure can
be applied in which the allocation of measurement resour-
cesNU versusNM is stepwise inferred from newly acquired
data. To this end, the expected reductions of the standard
error of the estimated fidelity are calculated, upon increas-
ing either NU or NM, using resampling techniques (see
Appendix C of Ref. [31]). Accordingly, NU and NM are
updated iteratively to maximize the expected decrease of
statistical uncertainty, until a predefined value of the
estimated error is reached.
In summary, we find that the presented protocol requires

a total number of experimental runs NUNM ∼ 2bNA with
b≲ 1, which is, despite being exponential, significantly
less than full QSTwith exponents b ≥ 2 [19]. For instance,
QST via compressed sensing [19,20] would require at least
Oð22NAÞ ∼ 106 experimental runs for a pure 10-qubit state,
whereas for our protocol 104 (PR) to 105 (PP) experimental
runs would be sufficient to obtain a fidelity estimation up to
a statistical uncertainty of 0.05.
Fidelity estimation with trapped ions.—In the following,

we present, as proof of principle, the measurement of
experiment-theory fidelities and experiment-experiment
fidelities of highly entangled quantum states prepared
via quench dynamics in a trapped ion quantum simulator.
To this end, we use data presented in Ref. [28]. Here, the
entanglement generation after a quantum quench with the
XY Hamiltonian,

HXY ¼ ℏ
X

i<j

Jijðσþi σ−j þ σ−i σ
þ
j Þ þ ℏB

X

i

σzi ; ð3Þ

was experimentally monitored, with σzi the third spin-1=2
Pauli operator, σþi ðσ−i Þ the spin-raising (spin-lowering)
operators acting on spin i, and Jij ≈ J0=ji − jjα the cou-
pling matrix with an approximate power-law decay α ≈
1.24 and J0 ¼ 420 s−1. The initial Néel-state, ρEð0Þ ≈
jψihψ j with jψi ¼ j0; 1; 0;…; 1i for N ¼ 10 ions, was
time evolved under HXY into the state ρEðtÞ. Subsequently,
randomized measurements were performed and, from
statistical autocorrelations of the outcome probabilities

PðEÞ
U ðsAÞ, purity and second-order Rényi entropy of

ρEðtÞ (and of density matrices of arbitrary subsystems)
were inferred. In total, NU ¼ 500 random unitaries were
used and NM ¼ 150 projective measurements per random

(a) (b)
(c)

FIG. 2. Scaling of the required number of measurements. (a),
(b) Average statistical error jðFmaxðρA; ρAÞÞe − 1j as a function of
the number of measurements NM per random unitary for various
NU (darkness of colors). The state ρA of NA ¼ 8 qubits (d ¼ 2) is
taken to be (a) a pure product state (PP) and (b) a pure Haar
random state (PR). Black lines are guides for the eye,
∼1=ðNM

ffiffiffiffiffiffiffi
NU

p Þ. (c) Scaling of the minimal number of required
measurements NM to estimate ½FmaxðρA; ρAÞ�e up to a fixed
statistical error of 0.05 as a function of the number of qubits NA,
for fixed NU ¼ 100. The mixed random states (MR) are obtained
from tracing out 3 qubits from Haar random states of NA þ 3
qubits.
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unitary were performed. For further experimental details,
see Ref. [28].
To numerically simulate the experiment and obtain a

corresponding theory state ρTðtÞ, we perform exact
diagonalization to simulate unitary dynamics or exactly
solve a master equation to include decoherence effects.
Subsequently, the NU ¼ 500 random unitaries which have
been employed in the experiment are applied to ρTðtÞ and
the occupation probabilities PðTÞ

U ðsÞ are calculated exactly
for each random unitary.
In Figs. 3(a) and 3(b), experiment-theory fidelities

FmaxðρE;A; ρT;AÞ of reduced states of connected partitions
½1 → NA� are displayed as a function NA for various times
after the quantum quench. For Fig. 3(a), theory states are
calculated by simulating unitary dynamics, and for
Fig. 3(b), we additionally include decoherence effects,
inherent to the state preparation (imperfect initial state
preparation, spin flips, and dephasing noise) and the
measurement process (depolarizing noise during the ran-
dom measurement) [28]. In both cases, we find a single
qubit fidelity being constant in time and close to unity. With
increasing subsystem size and time, the estimated fidelities
tend to decrease. Remarkably, we find theory-experiment
fidelities (a) ≳0.6 [(b) ≳0.7] even at late times T ¼ 5 ms,
when the system has undergone complex many-body
dynamics and is highly entangled [28].
We observe in Fig. 3 a decrease of the estimated fidelity

with system size already at t ¼ 0 ms, despite the fact that
the initial Néel state can be prepared and, being a simple
product state, directly verified (preparation fidelity ≳0.97
for NA ¼ 10). Thus, we attribute the decrease of the
estimated theory-experiment fidelity mainly to experimen-
tal imperfections in the implementation of the randomized
measurements, of two types: (i) unitary errors in the form of
random underrotations or overrotations, i.e., a mismatch
between the random unitaries applied in experiment
and theory, and (ii) decoherence in the form of local

depolarizing noise. While (i) decreases the estimated
density matrix overlap, and thus fidelity, in both cases
presented in Fig. 3, (ii) is taken into account into the
theory state for Fig. 3(b) and thus the estimated fidelities
are larger than in Fig. 3(a). We emphasize that both sources
of imperfections decrease the estimated fidelity and do not
lead to false positives, and we refer for a detailed error
modeling and further experimental investigations to
Appendix E of Ref. [31].
As a first step towards the cross-platform verification of

two quantum devices, we now present experiment-experi-
ment fidelities of quantum states prepared sequentially in
the same experiment. To this end, we divide the data
obtained in Ref. [28] into two parts, from now on called
experiment E1 and experiment E2, each consisting of
measurement outcomes for the same NU ¼ 500 random
unitaries and NM ¼ 75 measurements per random unitary.
Using Eq. (2), we calculate overlap and purities, and from
this the fidelity FmaxðρE1

; ρE2
Þ. In Figs. 4(a) and 4(b), the

experiment-experiment and theory-experiment fidelities are
displayed as a function of subsystem size for t ¼ 0; 1 ms.
In comparison to theory-experiment fidelities, experiment-
experiment fidelities are higher for both t ¼ 0 ms and
t ¼ 1 ms. We conclude that the random unitaries are
reproducibly prepared in the experiment, with a systematic

(a) (b)

FIG. 3. Experiment-theory verification in a trapped ion quan-
tum simulator. Measured fidelities FmaxðρE; ρTÞ as a function of
partition size NA (total system 10 qubits) for states ρE evolved
with HXY (J0 ¼ 420 s−1, α ¼ 1.24) for various times; exper-
imental data from Ref. [28]. Theory states ρT are obtained with
(a) unitary dynamics and including (b) decoherence effects (see
text). In both panels, NU ¼ 500 and NM ¼ 150. Error bars are
obtained with bootstrap resampling [39]. Dashed lines are guides
for the eye.

(a) (b)

(c) (d)

FIG. 4. Experiment self-verification in a trapped ion quantum
simulator. (a),(b) Estimated fidelities Fmax of two reduced states
ρE1

and ρE2
prepared sequentially in the same experiment as a

function of partition size, ½1 → NA�. The states ρE1
and ρE2

are
(a) two Néel states which have been (b) time evolved under HXY

(J0 ¼ 420 s−1, α ¼ 1.24) to t ¼ 1 ms; experimental data from
Ref. [28]. Experiment-theory fidelities are obtained by simulating
unitary dynamics (see text). Dashed lines are guides for the eye.
(c),(d) Measured fidelities Fmax(ρEðt1Þ; ρEðtÞ) for states time
evolved with HXY as a function of the time difference t − t1
(t1 ¼ 1 ms) for (c) a clean system and (d) with additional disorder
(see text). Different colors refer to different partitions ½1 → NA�.
Lines show theory simulations including decoherence effects (see
text). In all panels, error bars are estimated with bootstrap
resampling [39].
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mismatch (unitary error) compared to the ones on the
classical computer.
Finally, we illustrate our method in Figs. 4(c) and 4(d)

by the measurement of Fmax(ρEðt1Þ; ρEðtÞ) of two
quantum states evolved for different times. We consider
in Fig. 4(c) the clean system, governed by HXY, and
in Fig. 4(d) the case where additional on-site disorder
Htot ¼ HXY þP

j δjσ
z
j, with δj sampled uniformly from

½−3J0; 3J0�, is added. We find that for the clean system
the fidelity decays quickly as a function of the subsystem
size and time difference, resembling the complex, ergodic
dynamics in the interacting many-body system. On the
contrary, for the disordered system the fidelity stays, after
an initial short-time decay, approximately constant, and at
a finite value even for large (sub)systems. Our results are
thus consistent with localization phenomena, character-
ized through the system’s memory of earlier time and
slow dynamics, as also studied with out-of-time order
correlators [40–43], also accessible with randomized
measurements [44].
Conclusion.—We have presented a protocol to perform

cross-platform verification of quantum devices by direct
fidelity measurements, requiring only classical commu-
nication and significantly fewer measurements than full
quantum state tomography. Extrapolating the numerically
extracted scaling laws for the required number of exper-
imental runs, we expect it to be applicable in state-of-the-
art quantum simulators and computers with high repeti-
tion rates for (sub)systems consisting of a few tens of
qubits. In larger quantum systems, it gives access to the
fidelities of all possible subsystems up to a given size—
determined by the accepted statistical error and the
measurement budget—and thus enables a fine-grained
comparison of large quantum systems. Furthermore, we
expect that adaptive sampling techniques have the poten-
tial to reduce the measurement cost, in particular, when
knowledge over the quantum states of interest is taken
into account.
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