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Despite the success of neural networks at solving concrete physics problems, their use as a general-

purpose tool for scientific discovery is still in its infancy. Here, we approach this problem by modeling a

neural network architecture after the human physical reasoning process, which has similarities to

representation learning. This allows us to make progress towards the long-term goal of machine-assisted

scientific discovery from experimental data without making prior assumptions about the system. We apply
this method to toy examples and show that the network finds the physically relevant parameters, exploits
conservation laws to make predictions, and can help to gain conceptual insights, e.g., Copernicus’

conclusion that the solar system is heliocentric.
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Theoretical physics, like all fields of human activity, is
influenced by the schools of thought prevalent at the time of
development. As such, the physical theories we know may
not necessarily be the simplest ones to explain experimental
data, but rather the ones that most naturally followed from a
previous theory at the time. Both general relativity and
quantum theory were built upon classical mechanics—they
have been impressively successful in the restricted regimes
of the very large and very small, respectively, but are
fundamentally incompatible, as reflected by paradoxes
such as the black hole information loss paradox [1,2].
This raises an interesting question: Are the laws of quantum
physics, and other physical theories more generally, the
most natural ones to explain data from experiments if we
assume no prior knowledge of physics? While this question
will likely not be answered in the near future, recent
advances in artificial intelligence allow us to make a first
step in this direction. Here, we investigate whether neural
networks can be used to discover physical concepts from
experimental data.

Previous work.—The goal of using machines to help
with discovering the physical laws underlying experimental
data has been pursued in several contexts (see the
Supplemental Material (SM) [3] for a more detailed over-
view and Refs. [30-33] for recent reviews). A lot of early
work focused on finding mathematical expressions describ-
ing a given dataset (see, e.g., Refs. [34-36]). For example,
in Ref. [35] an algorithm recovers the laws of motion of
simple mechanical systems, like a double pendulum, by
searching over a space of mathematical expressions on
given input variables. More recently, significant progress
was made in extracting dynamical equations from exper-
imental data [37-45]. These methods are highly practical
and they were successfully applied to complex physical
systems, but require prior knowledge on the systems of
interest, for example in the form of knowing what the
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relevant variables are or that dynamics should be described
by differential equations. In certain situations one might not
have such prior knowledge or does not want to impose it to
allow the machine to find entirely different representations
of the physical system.

Over the last few years, neural networks have become
the dominant method in machine learning and they have
successfully been used to tackle complex problems in
classical as well as quantum physics (see the SM [3]
including Refs. [46-64] for further discussions).
Conversely, neural networks may also lead to new insights
into how the human brain develops physical intuition from
observations [65-71]. Very recently, physical variables
were extracted in an unsupervised way from time series
data of dynamical systems in Ref. [72].

Our goal in this work is to minimize the extent to which
prior assumptions about physical systems impose structure
on the machine learning system. Eliminating assumptions
that may not be satisfied for all physical systems, such as
assuming that particles only interact in a pairwise manner,
is necessary for the long-term goal of an artificial intelli-
gence physicist (see Ref. [73] for recent progress in this
direction) that can be applied to any system without a need
for adaptions and might eventually contribute to progress in
the foundations of physics. Very recently, neural networks
were used in this spirit to detect differences between
observed data and a reference model [74,75]. However,
there is a tradeoff between generality and performance, and
the performance of the machine learning system proposed
here—based on autoencoders [76—78]—is not yet compa-
rable to more established approaches that are adapted to
specific physical systems.

Modeling the physical reasoning process.—This work
makes progress towards an interpretable artificial intelli-
gence agent that is unbiased by prior knowledge about
physics by proposing to focus on the human physical
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Learning physical representations. (a) Human learning. A physicist compresses experimental observations into a simple

representation (encoding). When later asked any question about the physical setting, the physicist should be able to produce a correct
answer using only the representation and not the original data. We call the process of producing the answer from the representation
“decoding.” For example, the observations may be the first few seconds of the trajectory of a particle moving with constant speed; the
representation could be the parameters “speed v and “initial position x,” and the question could be “where will the particle be at a later
time #'?”” (b) Neural network structure for SciNet. Observations are encoded as real parameters fed to an encoder (a feed-forward neural
network, see SM [3]), which compresses the data into a representation (latent representation). The question is also encoded in a number
of real parameters, which, together with the representation, are fed to the decoder network to produce an answer. (The number of neurons

depicted is not representative.)

modeling process itself, rather than on specific physical
systems. We formalize a simplified physical modeling
process, which we then translate into a neural network
architecture. This neural network architecture can be
applied to a wide variety of physical systems, both classical
and quantum, and is flexible enough to accommodate
different additional desiderata on representations of the
system that we may wish to impose.

We start by considering a simplified version of the
physical modeling process, pictured in Fig. 1(a).
Physicists’ interactions with the physical world take the
form of experimental observations [e.g., a time series
(ti,x(t;))ieq1,... vy describing the motion of a particle at
constant speed]. The models physicists build do not deal
with these observations directly, but rather with a repre-
sentation of the underlying physical state of the observed
system [e.g., the two parameters initial position and speed,
(xg, v)]. Which parameters are used is an important part of
the model, and we will give suggestions about what makes a
good representation below. Finally, the model specifies how
to make predictions (i.e., answer questions) based on the
knowledge of the physical state of the system (e.g., “where is
the particle at time #?”). More formally, this physical
modeling process can be regarded as an “encoder” E: O —
‘R mapping the set of possible observations O to represen-
tations R, followed by a “decoder” D: R x Q — A map-
ping the sets of all possible representations R and questions
Q to answers A.

Network  structure.—This modeling process can be
translated directly into a neural network architecture, which
we refer to as SciNet in the following [Fig. 1(b)]. The
encoder and decoder are both implemented as feed-forward
neural networks. The resulting architecture, except for the
question input, resembles an autoencoder in representation
learning [76,77], and more specifically the architecture in
Ref. [79]. During the training, we provide triples of the

form (0, g, acor (0, q)) to the network, where a... (0, q) €
A is the correct reply to question g € Q given the
observation o € O. The learned parametrization is typically
called latent representation [76,77]. To feed the questions
into the neural network, they are encoded into a sequence of
real parameters. Thereby, the actual representation of a
single question is irrelevant as long as it allows the network
to distinguish questions that require different answers.

It is crucial that the encoder is completely free to choose
a latent representation itself, instead of us imposing a
specific one. Because neural networks with at least one
hidden layer composed of sufficiently many neurons can
approximate any continuous function arbitrarily well [80],
the fact that the functions £ and D are implemented as
neural networks does not significantly restrict their general-
ity. However, unlike in an autoencoder, the latent repre-
sentation need not describe the observations completely;
instead, it only needs to contain the information necessary
to answer the questions posed.

This architecture allows us to extract knowledge from the
neural network: all of the useful information is stored in the
representation, and the size of this representation is small
compared to the total number of degrees of freedom (d.o.f.)
of the network. This allows us to interpret the learned
representation. Specifically, we can compare SciNet’s
latent representation to a hypothesized parameterization
to obtain a simple map from one to the other. If we do not
even have any hypotheses about the system at hand, we
may still gain some insights solely from the number of
required parameters or from studying the change in the
representation when manually changing the input, and the
change in output when manually changing the representa-
tion (as in, e.g., Ref. [78]).

Desired properties for a representation.—For SciNet to
produce physically useful representations, we need to
formalize what makes a good parameterization of a
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physical system, i.e., a good latent representation. We stress
that this is not a property of a physical system, but a choice
we have to make. We will give two possible choices below.

Generally, the latent representation should only store the
minimal amount of information that is sufficient to cor-
rectly answer all questions in Q. For minimal sufficient
uncorrelated representations, we additionally require that
the latent neurons be statistically independent from each
other for an input sampled at random from the training data,
reflecting the idea that physically relevant parameters
describe aspects of a system that can be varied independ-
ently and are therefore uncorrelated in the experimental
data. Under this independence assumption, the network is
then motivated to choose a representation that stores
different physical parameters in different latent neurons.
We formalize these demands in the SM [3] and show, using
techniques from differential geometry, that the number of
latent neurons equals the number of underlying d.o.f. in the
training data that are needed to answer all questions Q. To
implement these requirements in a neural network, we
use well-established methods from representation learning,
specifically disentangling variational autoencoders [78,81]
(see SM [3] for details).

Alternatively, for situations where the physically relevant
parameters can change, either over time or by some time-
independent update rule, we might prefer a representation
with a simple such update rule. We explain below how this
requirement can be enforced.

Results.—To demonstrate that SciNet helps to recover
relevant concepts in physics by providing the relevant
physical variables, both in quantum- and classical-
mechanical settings, we consider four toy examples from
different areas of physics. In summary, we find (i) given a
time series of the positions of a damped pendulum, SciNet
can predict future positions with high accuracy and it uses
the relevant parameters, namely, frequency and damping
factor, separately in two of the latent neurons (and sets the
activation of unnecessary latent neurons to zero), (ii) SciNet
finds and exploits conservation laws: it uses the total
angular momentum to predict the motion of two colliding
particles, (iii) given measurement data from a simple
quantum experiment, SciNet can be used to determine
the dimension of the underlying unknown quantum system
and to decide whether a set of measurements is tomo-
graphically complete, i.e., whether it provides full infor-
mation about the quantum state, and (iv) given a time series
of the positions of the Sun and Mars as observed from
Earth, SciNet switches to a heliocentric representation—
that is, it encodes the data into the angles of the two planets
as seen from the Sun. The results show that SciNet finds,
without having been given any prior information about the
specific physical systems, the same quantities that we use in
physics textbooks to describe the different settings. We also
show that our results are robust against noise in the
experimental data. To illustrate our approach, we will

now describe two of these settings in some depth. For
detailed descriptions of the four different settings, the data
generation, interpretation, and additional background infor-
mation, we refer to the SM [3].

In all our examples, the training data we use are opera-
tional and could be generated from experiments; i.e., the
correct answer is the one observed experimentally. Here,
we use simulations instead because we only deal with
classical and quantum mechanics, theories whose predic-
tions are experimentally well tested in the relevant regimes.
One might think that using simulated data would restrict
SciNet to rediscovering the theory used for data generation.
However, in particular for quantum mechanics, we are
interested in finding conceptually different formulations of
the theory with the same predictions.

Quantum state tomography.—In quantum mechanics, it
is not trivial to construct a simple representation of the state
of a quantum system from measurement data, a task called
quantum tomography [82]. In the following, we will show
that SciNet finds representations of arbitrary (pure) one-
and two-qubit states. To ensure that no prior knowledge
about quantum physics is required to collect the measure-
ment data, we assume an operational setting in which we
have access to two devices in a lab, where one device can
create (many copies of) a quantum system in a certain state
depending on the chosen parameters of the device. The
other device performs binary measurements on the quan-
tum system. The input to SciNet consists of the outcome
probabilities of a random fixed set of “reference measure-
ments” on quantum systems in the unknown quantum state
. As a question input, we provide a parametrization of a
measurement @ (one may think of the setting of the dials
and buttons of the measurement device). SciNet has to
predict the outcome probability of the measurement @ on a
quantum system in the state yw. We train SciNet with
different pairs (w, y) for one and two qubits. The results are
shown in Fig. 2. Training different networks with different
numbers of latent neurons, we can observe how the quality
of the predictions (after training has been completed)
improves as we allow for more parameters in the repre-
sentation of y. This allows us to gain relevant information,
without previous hypotheses about the nature of this
representation (for example, whether it is a vector in a
Hilbert space).

If the reference measurements are tomographically
complete, meaning that they are sufficient to reconstruct
a complete representation of the underlying quantum
system, the plots in Fig. 2 show a drop in prediction error
when the number of latent neurons is increased up to two
and six for the cases of one and two qubits, respectively
[83]. This is in accordance with the number of d.o.f.
required to describe a one- or a two-qubit state in our
current theory of quantum mechanics. For the case where
the set of measurements is tomographically incomplete, it is
not possible for SciNet to predict the outcome of the final
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FIG. 2. Quantum tomography. SciNet is given tomographic
data for one or two qubits, as shown in part (a) and (b) of the
figure, respectively, and an operational description of a meas-
urement as a question input and has to predict the probabilities of
outcomes for this measurement. The plots show the root mean
square error of SciNet’s measurement predictions for test data as a
function of the number of latent neurons. In the tomographically
complete case, SciNet recovers the number of (real) d.o.f.
required to describe a one and a two qubit state (which are
two and six, respectively). Tomographically incomplete data can
be recognized, since the prediction error remains high as one
increases the number of latent neurons.

measurement perfectly regardless of the number of latent
neurons. This means that purely from operational data, we
can make a statement about the tomographic completeness
of measurements and about the number of d.o.f. of the
underlying unknown quantum system.

Enforcing a simple time evolution.—As mentioned
above, if the physically relevant parameters can change,
we can enforce a representation that has a simple update
rule. For illustration, we will consider time evolution here,
but more general update rules are possible. To accommo-
date changing physical parameters, we need to extend the
latent representation as shown in Fig. 3(a). Instead of a
single latent representation with a decoder attached to it, we
now have many latent representations that are generated
from the initial representation by a time evolution network.
Each representation has a decoder attached to it to produce
an answer to a question. Because we only want the
parameters, but not the physical model, to change in time,

Earth
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encoder £ evolution evolution Mars @
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FIG. 3.

all time evolution steps and decoders are identical; i.e., they
implement the same function. The encoder, time evolution
network, and decoder are trained simultaneously. To
enforce parameters with a simple time evolution, we restrict
the time evolution network to implementing very simple
functions, such as addition of a constant [84].

Heliocentric solar system.—In the 16th century,
Copernicus used observations of the positions of different
planets in the night sky [Fig. 3(b)] to hypothesize that the
Sun, and not the Earth, is at the center of our solar system.
This heliocentric view was confirmed by Kepler at the start
of the 17th century based on astronomic data collected by
Brahe, showing that the planets move around the Sun in
simple orbits. Here, we show that SciNet similarly uses
heliocentric angles when forced to find a representation for
which the time evolution of the variables takes a very
simple form, a typical requirement for time-dependent
variables in physics.

The observations given to SciNet are angles 8),(7y) of
Mars and 6g(1,) of the Sun as seen from Earth at a starting
time 7, (which is varied during training). The time evolution
network is restricted to addition of a constant (the value of
which is learned during training). At each time step i,
SciNet is asked to predict the angles as seen from Earth at
the time 7; using only its representation r(¢;). Because this
question is constant, we do not need to feed it to the
decoder explicitly.

We train SciNet with randomly chosen subsequences of
weekly (simulated) observations of the angles 6,, and 6y
within Copernicus’ lifetime (3665 observations in total).
For our simulation, we assume circular orbits of Mars and
Earth around the Sun. Figure 3(c) shows the learned
representation and confirms that SciNet indeed stores a
linear combination of heliocentric angles. We stress
that the training data only contains angles observed from
Earth, but SciNet nonetheless switches to a heliocentric
representation.

2
2
1 uoneAnde JuNeT

Heliocentric model of the solar system. SciNet is given the angles of the Sun and Mars as seen from Earth at an initial time 7,

and has to predict these angles for later times. (a) Recurrent version of SciNet for time-dependent variables. Observations are encoded
into a simple representation r(f,) at time #,. Then, the representation is evolved in time to r(#,) and a decoder is used to predict a(z, ), and
so on. In each (equally spaced) time step, the same time evolution network and decoder network are applied. (b) Physical setting. The
heliocentric angles ¢z and ¢, of the Earth and Mars are observed from the Sun; the angles 0 and @), of the Sun and Mars are observed
from Earth. All angles are measured relative to the fixed star background. (c) Representation learned by SciNet. The activations ry 5(fg)
of the two latent neurons at time ¢, [see Fig. 3(a)] are plotted as a function of the heliocentric angles ¢ and ¢,,. The plots show that the
network stores and evolves parameters that are linear combinations of the heliocentric angles.
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Conclusion.—In this work, we have shown that SciNet
can be used to recover physical variables from experimental
data in various physical toy settings. The learned repre-
sentations turned out to be the ones commonly used in
physics textbooks, under the assumption of uncorrelated
sampling. In future work we plan to extend our approach to
data where the natural underlying parameters are correlated
in the training distribution. The separation of these param-
eters in the representation found by SciNet requires the
development of further operational criteria for disentan-
gling latent variables. In more complex scenarios, the
methods introduced here may lead to entirely novel
representations, and extracting human physical insight
from such representations remains challenging. This could
be addressed using methods from symbolic regression [85]
to obtain analytical expressions for the encoder and decoder
maps, or for a map between a hypothesized and the actual
representation. Alternatively, methods such as the ones
presented in Refs. [86,87] could help to improve the
interpretability of the representation. Following this direc-
tion, it might eventually become possible for neural net-
works to produce insights expressed in our mathematical
language.

The source code and the training data are available at the
web address in Ref. [88]. See also the Supplemental
Material [3] for the implementation details. SciNet worked
well on all tested examples; i.e., we did not postselect
examples based on whether SciNet worked or not.
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