
 

Ultimate Strength of Metals
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We present a theoretical model that predicts the peak strength of polycrystalline metals based on the
activation energy (or stress) required to cause deformation via amorphization. Building on extensive earlier
work, this model is based purely on materials properties, requires no adjustable parameters, and is shown to
accurately predict the strength of four exemplar metals (fcc, bcc, and hcp, and an alloy). This framework
reveals new routes for design of more complex high-strength materials systems, such as compositionally
complex alloys, multiphase systems, nonmetals, and composite structures.
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Despite nearly a century of effort, beginning with
Frenkel’s seminalwork in the 1920s [1], a general theoretical
framework that directly links bond strength and the strength
of polycrystalline metals remains an elusive and invaluable
target. The design of more reliable, cost-effective and
damage-tolerant materials for use in applications such as
energy efficient vehicles, aircrafts, and renewable energy
systems (e.g., wind turbine gearboxes) continues to drive
research and development efforts where the strength of
metals is a primary and limiting factor. A means of
estimating an upper bound for the strength of an alloy
(i.e., under tension or other applied mechanical loads) is
crucial for determining the size and geometry of structures
and necessary for optimization of parameters like strength-
to-weight ratios. The increasing reliance on integrated
computational materials engineering makes accurate pre-
dictions of materials properties invaluable. While most
metals used in engineering applications are alloys, the details
and atomic origins of the strength of pure metals are
instrumental to a formal understanding of alloys.
Frenkel initially calculated the shear strength of metals

by considering a periodic potential and arrived at a liming
strength of τmax ¼ Gb=2πa ≅ G=10, where τmax is the
maximum shear strength, G is the shear modulus, b is
the magnitude of the Burgers vector, and a is the lattice
constant [1]. It was quickly realized that no metal has a
strength approaching this value, and this realization was
crucial for the discovery of dislocations and their role in
plasticity [2–4]. Frenkel’s approach was later refined by
Mackenzie [5,6] and Kelly [7] to a value of approximately
G=30 that provided a more reasonable estimate of strength.
However, these estimates are inaccurate (see below) as

metals tend to fail at stresses far below these ideal strengths,
except in extreme cases such as nanowires [8–11]. Other
more recent models predict the maximum shear strength of
fcc metals to be 2γSFE=b based on stacking fault energies
γSFE that determine the splitting distance between partial
dislocations [12].
Generally, the stress required to nucleate and propagate

dislocations becomes larger as the grain size decreases,
and this is the basis for the Hall-Petch relationship
σ ¼ σ0 þ kd−1=2, where σ is the uniaxial yield stress,
and σ0 and k are constants [13]. The corresponding shear
stress τ is the deviatoric component of σ giving σ ¼ ffiffiffi

3
p

τ.
As the grain size decreases below a critical grain size dc,
there is a crossover in mechanisms [14] to grain boundary
sliding (GBS). In other words, when intragranular defor-
mation (dislocation activity) becomes too energetically
costly, intergranular mechanisms dominate, and the stress
required to shear grain boundaries becomes the measure of
the maximum strength of a material. There is currently no
theory to predict this value from materials properties alone
without adjustable parameters.
There is a large body of literature, including early

explanations by Rosenhain and Ewen [15], calculations
by Kê [16] and Mott [17], and more recent work [18,19]
that consider GBS to be viscous flow between grains.
Specifically, when deformation occurs on timescales too
short for diffusive (i.e., creep) mechanisms to be active, and
grain sizes are too small to accommodate dislocation
activity, dynamic motion of material in the grain boundaries
is required. We show that it is possible to estimate the
maximum strength for all metals, including face-centered-
cubic (fcc), body-centered-cubic (bcc), hexagonal-close-
packed (hcp), and alloys by modeling GBS as viscous flow.
Specifically, we calculate the energetic cost for the creation
of a continuous, slip-accommodating amorphous interface
from crystalline material (e.g., grain interiors, stacking
faults, low-angle grain boundaries, dislocation cell
walls, etc.). In other words, this implies deformation
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accommodation by converting an ordered phase to an
amorphous phase that is effectively equivalent to a con-
tinuous network of high-angle grain boundaries. As in
Frenkel’s model of diffusion [1], or Mott’s for GBS [17],
we consider the strain rate to be an activated process with
an energy barrier that is effectively lowered by the
application of stress,

_εGBS ¼ _εtot exp

�
−ΔF − τV�

kT

�
; ð1Þ

where _εGBS is the component of strain rate that is associated
with GBS [20], _εtot the total (applied) strain rate, ΔF is
the activation energy, τ is the shear stress, V� is the
activation volume, T is the temperature, and k is
Boltzmann’s constant. Because we are considering viscous
flow at the boundaries, we take the activation energy to be
related to the heat of fusion L, as this represents the energy
difference between crystalline and amorphous phases [17].
Specifically, we use

ΔF ¼
�
L
ρL
M

��
1 − T

Tm

�
fgV�; ð2Þ

where ρL is the density of the liquid at the melting
temperature (used as an approximation of the amorphous
density), M is the atomic mass, T is the temperature, Tm is
the melting temperature, and fg is the volume fraction of
crystalline material in the grains that incurs an amorphiza-
tion energy penalty. Note that to make this an atomic
process, we are effectively converting the heat of fusion to
an atomic heat of fusion by dividing by the approximate
atomic volume in an amorphous phase (i.e., ρL=M). The
activation volume for single atomic motions is taken to be
b3 [21], where b is the magnitude of the Burgers vector
(equivalent to a metallic atomic diameter), and the volume
fraction fg ¼ ½ðd − δÞ=d�3 is the same as in previous
models [22,23], with d the grain diameter and δ the grain
boundary width. This term accounts for the decreasing
amount of crystalline material that must be amorphized as
the grain boundary density increases with decreasing grain
size. It is important to note that this relationship is gene-
rally valid for any space-filling polyhedra [23]. It is also
useful to note that the calculated amorphization energy is
effectively equivalent to the energy of a high angle
grain boundary, a concept similar to that proposed by
Gottstein and Shvindlerman [24]. In Fig. 1 we present a
comparison of comprehensive DFT-determined average
values of grain boundary energies for several metals [25]
to predicted values from our expression above, mult-
iplied by an approximate grain boundary width (2b),
γHAGB;calc ¼ ½LðρL=MÞ�½1 − ðT=TmÞ�ð2bÞ. Both the DFT
and predicted values are shown at zero kelvin, and atomic
diameters of fully coordinated crystal structures were used
in place of the magnitude of the Burgers vector.

Expanding the exponential in Eq. (1) to first order and
rearranging terms gives an expression for the stress,

τ ¼
�
L
ρL
M

��
1 − T

Tm

�
fg þ

�
_εGBS
_εtot

− 1

�
kT
b3

: ð3Þ

The ratio _εGBS=_εtot, which is difficult to determine
experimentally, has been the subject of much discussion
in the superplasticity literature [20]. However, noting the
similarity of Eq. (3) to the empirical superplasticity
equation for pure GBS _ε ¼ ðτ − τ0Þ=ηeff , which treats
grain boundaries as a Bingham fluid with a threshold
stress τ0 and effective viscosity ηeff, we arrive at a form of
Eq. (3),

τ ¼ τ0 þ ηeff _εGBS

¼
��

L
ρL
M

��
1 − T

Tm

�
fg − kT

b3

�
þ
�

kT
_εtotb3

�
_εGBS: ð4Þ

The final term accounts for viscous losses due to the
shear of the boundaries. Considering that the viscosity of
liquid metals is ∼1 mPa s and experimental strain rates are
sufficiently low that this term does not contribute strongly,
we take it to be zero as a bounding case for our prediction.
Equivalently, this implies that the ratio _εGBS=_εtot in Eq. (3)
is small for experiments [20]. In dynamic simulations (i.e.,
not quasistatic, where there essentially is no applied strain
rate), however, the ratio _εGBS=_εtot ≅ 1, as all applied strain
is directly transmitted to the boundaries. This causes the
last term in Eq. (3) to become zero and gives a prediction
for dynamic simulations of

τ ¼
�
L
ρL
M

��
1 − T

Tm

�
fg: ð5Þ

FIG. 1. Reference average values of grain boundary energy
from DFT [25] compared to predicted values from heat of fusion
at zero kelvin.
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We show the (room-temperature) predictions of this
model in Fig. 2, which require no adjustable parameters,
along with published experimental and simulation data. All
experimental data (x) for pure metals in Fig. 2 are taken
from the extensive Hall-Petch review from Cordero et al.
[13], simulation data are shown as black and blue circles for
quasistatic and dynamic cases, respectively, and for the
alloy we also include a Hall-Petch equation best fit for grain
sizes > 10 nm to the data from [26]. As data in the inverse
Hall-Petch regime are scarce, we have chosen four repre-
sentative cases (pure metals with fcc, bcc, and hcp crystal
structures, and one alloy, Ni-W) to show the broad
applicability of this model. A similar analysis for Ni is
presented in the Supplemental Material [27]. In the cases
where simulation data are available (Cu and Ta; Ni in
supplemental), we show predictions for both experimental

and simulation conditions. Note that in all cases, the
experimental predictions match experimental values very
well, and in the case of Cu, they also match the results from
the quasistatic (i.e., _εtot → 0) simulations of Schiøtz et al.
[14]. With the correction for dynamic simulations, the
predictions match high-strain rate results from Schiøtz and
Jacobsen [9] for Cu, and for Tang et al. [28] and Hinkle
et al. [29] for Ta (filled circle).
With the remarkable agreement between the predictions

and the available data, the possibility of predicting the
ultimate strength of metals using this simple expression
arises.The crossover betweenGBSand theHall-Petch regime
cannot currently be predicted for all metals, as there is only a
theoretical prediction for fccmetals [12]. Instead,we note that
the asymptotic value of our prediction (i.e., fg ¼ 1) gives a
reasonable upper bound for this strength. In Fig. 3, we show

FIG. 2. Aggregate experimental (x) and simulation (o) data for exemplars of fcc (Cu) [9,10,13,14], bcc (Ta) [13,28,29], and hcp (Zn)
[13,30] crystal structures, and an alloy (Ni-W) [26], the maximum shear strengths predicted using the amorphization model (red line),
and corresponding Hall-Petch best fit (blue lines) from Cordero et al. [13] or from our fit to literature data (black line). Lines are solid or
dashed to indicate regions where they are applicable (i.e., the mechanism with the lowest stress required to activate) or not applicable,
respectively.
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the comparison of this prediction with the highest stresses
shown in the Cordero et al. [13] review. Figure 3 shows that
the amorphizationmodel accurately predicts—without fitting
—the maximum strength of a variety of metals, even with the
caveats above that this prediction forms an upper bound.
Almost all data in Fig. 3 show an obvious correlationwith the
prediction, and except in three cases, fall below the dashed
line that indicates perfect agreement.Wenote that to arrive at a
single value for experimental strength in Fig. 3, we used the
highest reasonable stress from Cordero et al. [13] without
consideration of additional strengthening mechanisms, such
as from oxidation, as is possible in the cases of Fe and Ni that
fall above the line. This forms an especially stringent test of
the model. Also shown in Fig. 3 is the comparison of these
strengths with the prediction of G=30 from the Mackenzie
model [5,6]. Agreement in this case is poor.
The success of this model in predicting the strength of

metals leads to two major conclusions. The first is that in
the absence or suppression of dislocation slip, the maxi-
mum strength of any metal is determined by the heat of
fusion, and thus is a value that can be relatively easily
calculated. The second implication is that it is possible to
directly design alloys for maximum strength by calculating
and optimizing the heat of fusion. This has strong impli-
cations in a variety of fields but seems particularly of value
in the cases of high entropy or compositionally complex
alloys [31], where the design space is highly multidimen-
sional. The combination of this model with the regular
solution model of Murdoch and co-workers [32] for stable,
nanocrystalline binary alloys is also a tantalizing potential
application for design of ultrastrong metals.
While considering GBS to be viscous flow with an

energy barrier related to the heat of fusion is not a new
concept, this model is the first to directly relate the strength
of metals to materials properties without adjustable param-
eters or fitting. This implies a fundamental relationship
between the strength of interatomic bonds (i.e., heat of
fusion) and the strength of bulk, polycrystalline metals,

linking nanoscale mechanisms to macroscopic properties.
This theory thus serves to directly connect theoretical
calculations with practical, experimental measurements
and provides new insights to inform the design of
higher-strength alloys.
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