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One of the physically least understood characteristics of geophysical transport of sediments along
sediment surfaces is the well-known experimental observation that the sediment transport rate Q is linearly
dependent on the fluid shear stress τ applied onto the surface in air, but is nonlinearly dependent on τ in
water. Using transport simulations for a wide range of driving conditions, we show that the scaling depends
on the manner in which the kinetic fluctuation energy of transported particles is dissipated: via
predominantly fluid drag and quasistatic contacts (linear) versus fluid drag and quasistatic and collisional
contacts (nonlinear). We use this finding to derive a scaling law (asymptotically Q ∼ τ2) in simultaneous
agreement with measurements in water and air streams.
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Turbulent shearing flows of Newtonian fluid along plan-
etary surfaces composed of loose sediment are an important
driver of sediment transport and erosion on Earth and other
planets [1–6]. In particular, if the transported sediment is
frequently deposited on the sediment bed underneath (i.e., if
it is not suspended by the fluid turbulence), then the interplay
between erosion, deposition, bed topography, and flow gives
rise to a rich variety of bedforms, such as desert dunes and
subaqueous ripples [6–8]. Predicting the evolution of
fluid-sheared planetary surfaces thus requires a profound
understanding of nonsuspended sediment transport [9–12],
especially of the dependency of the transport rate Q on
environmental parameters, such as the fluid shear stress τ
applied onto the bed. Measurements have revealed that Q
scales approximately linearly with τ in aeolian (i.e., air-
driven) transport [13–15], but scales nonlinearly with τ in
fluvial (i.e., liquid-driven) transport [16–19]. However,
the physical origin of this difference remains controversial
[20–22] and a general scaling law for Q elusive.
Here, using discrete element method-based sediment

transport simulations, we show that the linear-to-nonlinear
transition in the scaling of Q with τ is caused by a regime
shift in the manner in which kinetic fluctuation energy of
transported particles is dissipated. Via parametrizing this
shift, we derive a general scaling law, valid for continuous
(not intermittent) turbulent transport of nearly monodis-
perse sediment, in simultaneous agreement with measure-
ments in water and air streams.
We use the numerical model of Ref. [23], which

couples a discrete element method for the particle
motion under gravity, buoyancy, and fluid drag with a
continuum Reynolds-averaged description of hydrodynam-
ics. Spherical particles (∼104) with mild polydispersity are
confined in a quasi-two-dimensional domain of length

∼103d (where d is themean particle diameter), with periodic
boundary conditions in the flow direction, and interact via
normal repulsion (restitution coefficient e ¼ 0.9) and tan-
gential friction (contact friction coefficient μc ¼ 0.5). The
bottom-most particle layer is glued on a bottom wall, while
the top of the simulation domain is reflective but so high that
it is never reached by transported particles. The Reynolds-
averaged Navier-Stokes equations are combined with a
semiempirical mixing length closure that ensures a smooth
hydrodynamic transition from high to low particle concen-
tration at the bed surface and quantitatively reproduces the
mean turbulent flow velocity profile in the absence of
transport. Simulations with this numerical model are insen-
sitive to e, and therefore insensitive to viscous damping, and
simultaneously reproduce measurements of the rate and
threshold of aeolian and viscous and turbulent fluvial
transport (Figs. 1 and 3 of Ref. [21]), height profiles of
relevant equilibrium transport properties (Fig. 2 of Ref. [21]
and Fig. 6 of Ref. [24]), and aeolian ripple formation [25].
Details of the numerical model and its validation are
described in the Supplemental Material [26].
The simulated steady, homogeneous transport conditions

are characterized by three dimensionless numbers: the
particle-fluid-density ratio s≡ ρp=ρf, Galileo number

Ga≡ ffiffiffiffiffiffiffiffiffi
sg̃d3

p
=ν (also known as Yalin parameter [27]),

and Shields number Θ≡τ=ðρpg̃dÞ, where g̃≡ ð1 − 1=sÞg
is the buoyancy-reduced value of the gravitational constant
g and ν the kinematic fluid viscosity. The density ratio s
separates aeolian (s≳ 10) from fluvial (s≲ 10) conditions,
while Ga controls the dimensionless terminal settling
velocity [i.e., vs=

ffiffiffiffiffiffiffi
sg̃d

p ¼ fðGaÞ] [21].
We consider a Cartesian coordinate system ðx; y; zÞ, with

x the horizontal coordinate in the flow direction, z the
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vertical coordinate in the direction normal to the bed
oriented upwards, and y the lateral coordinate. For a given
simulated condition, we define the bed surface elevation
zr as the effective elevation of transported particles
rebounding with the bed [22] (see the Supplemental
Material [26] for the computation of physical quantities
from the simulation data). From the masses (mi) and
velocities (vi) of all particles, numbered consecutively
(upper index i), we then obtain the sediment transport rate
Q≡ ð1=ΔÞhPi m

ivixiT (i.e., the average total horizontal
particle momentum per unit bed area), transport load M≡
ð1=ΔÞhPzi≥zr m

iiT (i.e., the average total mass of particles
transported above zr per unit bed area), and average
horizontal velocity of transported particles vx ≡Q=M,
where Δ is the area of the (x, y)-simulation domain and
h·iT denotes the time average. These quantities are non-
dimensionalized viaQ� ≡Q=ðρpd

ffiffiffiffiffiffiffi
sg̃d

p Þ,M� ≡M=ðρpdÞ,
and vx� ≡ vx=

ffiffiffiffiffiffiffi
sg̃d

p
.

Using the definitions from the previous paragraph, the
main finding of this Letter is the following relationship
between Q� and M� (Fig. 1):

Q� ¼ M�vx�tð1þ cMM�Þ; ð1Þ

where cM ¼ 1.7 and a quantity’s subscript t refers to its
value in the limit of no transport: Θ → ΘtðGa; sÞ (equiv-
alent to M� → 0). The function ΘtðGa; sÞ defines the
transport threshold Shields number for given transport
conditions Ga and s [21]. We find that Eq. (1) is valid
for both fluvial conditions with s1=2Ga≳ 80 and aeolian
conditions with s1=2Ga≳ 200 (Fig. 1), encompassing the

vast majority of nonsuspended sediment transport condi-
tions that occur in nature, including sand and gravel
transport in water and air on Venus, Titan, Earth, Mars,
and Pluto.
Equation (1) contains a linear and a quadratic term in

M�. The linear term dominates when only a few particles
are transported (M� ≪ 1=cM), that is, when the bed can be
considered quasistatic and not many binary collisions
between transported particles occur. The quadratic term
becomes important once M� ∼ 1=cM, that is, once binary
collisions between transported particles become significant.
Below, we show that Eq. (1) follows naturally from a
rigorous link between momentum transport and fluctuation
energy dissipation, in which the linear term corresponds to
dissipation by fluid drag and particle-bed collisions and the
quadratic term to dissipation in binary collisions.
For a single particle of mass m and velocity v subje-

cted to the force F, Newton’s axiom F ¼ m_v dictates
ðd=dtÞ 1

2
mvzvx ¼ FðxvzÞ, where the parentheses denote the

symmetrization of the indices. This balance relates the
horizontal particle momentum to the contact (superscript
c) and fluid drag (superscript d) forces acting on the particle
via 1

2
mvxg̃ ¼ −Fg̃

ðxvzÞ ¼ Fc
ðxvzÞ þ Fd

ðxvzÞ − ðd=dtÞ 1
2
mvzvx.

Summing over all particles per unit bed area and time
averaging then yields (steady, homogenous transport
conditions)

1

2
Q� ¼ Dc� þDd�; ð2Þ

where ðDc�; Dd�Þ≡ ðDc;DdÞ=ðρpg̃d
ffiffiffiffiffiffiffi
sg̃d

p Þ, with Dc ≡
ð1=ΔÞhPi F

ci
ðxvzÞiT and Dd ≡ ð1=ΔÞhPi F

di
ðxvzÞiT the dis-

sipation rates per unit bed area by particle contact and fluid
drag forces, respectively, of −ð1=ΔÞhPi

1
2
mivizvixiT [26],

which physically represents a fluctuation energy because
hPi m

iviziT ¼ 0 in the steady state [28].
For any elevation z, Dc can be separated into the contact

dissipation rate Dc↑ðzÞ≡ ð1=ΔÞhPzi≥z F
ci
ðxvzÞiT of par-

ticles moving above z and the contact dissipation rate
Dc↓ðzÞ≡ ð1=ΔÞhPzi<z F

ci
ðxvzÞiT of particles moving below

z, that is, Dc ¼ Dc↑ðzÞ þDc↓ðzÞ. We find that, for any
given transport condition, there is an elevation zc such that
Dc↑

� ðzcÞ ¼ acM2� and Dc↓
� ðzcÞ ¼ bcM�, where ac and bc

are parameters independent of M� (see Fig. 2 for two
exemplary cases). In the region z ≥ zc, energy is predomi-
nantly dissipated in binary particle collisions, and thus the
scaling with M2� expresses the binary collision probability
(analogous to granular kinetic theory [29]). In the region
z < zc, the sediment bed is quasistatic and energy dis-
sipation is controlled by the probability of particle-bed
collisions, which scales with M�. Furthermore, for the
relevant transport conditions (legend of Fig. 1), we find that
the drag dissipation rate Dd� roughly scales with the
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FIG. 1. Q�=vx�t versus M�. Symbols correspond to data from
numerical sediment transport simulations for various combina-
tions of the density ratio s, Galileo numberGa, and Shields number
Θ, satisfying the conditions s1=2Ga≳ 80 for fluvial transport
(s ≲ 10) and s1=2Ga≳ 200 for aeolian transport (s ≳ 10). The line
corresponds to Eq. (1).
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sediment mass that is responsible for the fluctuation motion
(i.e., transported particles), that is,Dd� ¼ adM�, where ad is
a parameter that is roughly independent ofM� [26]. Hence,
the total dissipation rate (Dc� þDd�) scales as

1

2
Q� ¼ Dc� þDd� ¼ ðac þ adÞM� þ bcM2�: ð3Þ

Using the definition vx� ¼ Q�=M� and taking the limit
M� → 0 (i.e., Θ → Θt), we obtain the closure relation
2ðacþadÞ¼vx�ðM�→0Þ≡vx�t. Furthermore, the strength
of the nonlinear term [cM in Eq. (1)] is given by the ratio of
the fluctuation energy dissipated in binary collisions
and that dissipated by fluid drag and particle-bed collisions:
cM ¼ bc=ðac þ adÞ. Note that, although bc and ac þ ad

are in general functions of Ga and s, their ratio cM is
approximately constant for relevant conditions (Fig. 1).
We further simplify Eq. (1) using two insights: (i) steady,

homogeneous transport states are those at which M� is so
large that the flow (weakened by the particle-flow feed-
back) is barely able to compensate the average energy
losses of transported particles rebounding with the bed
[22], and (ii) Θt is the smallest Shields number for which
such a state exists [20,21]. These insights allow para-
metrizing vx�t and M� in terms of the Shields number
Θ as vx�t ¼ 2κ−1

ffiffiffiffiffi
Θt

p
(valid for s1=4Ga≳ 40) and M� ¼

μ−1b ðΘ − ΘtÞ [26], where κ ¼ 0.4 is the von Kármán
constant and μb an approximately constant bed friction
coefficient that characterizes the geometry of particle-bed
rebounds (we choose μb ¼ 0.63, which yields reasonable
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FIG. 2. Vertical profiles ofM−2� Dc↑
� [(a1) and (b1)] andM−1� Dc↓

� [(a2) and (b2)]. Profiles in (a1) and (b1) are rescaled by the transport
layer thickness above zc: hc ≡

R
∞
zc

ϕzdz=
R
∞
zc

ϕdz − zc, where ϕ is the particle volume fraction. Lines correspond to data from numerical
sediment transport simulations for an exemplary fluvial transport condition [density ratio s ¼ 2.65, Galileo number Ga ¼ 50, and
various Shields numbers Θ; (a1) and (a2), figure legend in (a1)] and an exemplary aeolian transport condition [s ¼ 2000, Ga ¼ 5, and
various Θ; (b1) and (b2), figure legend in (b1)].
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FIG. 3. Test of Eq. (4) (solid lines) against laboratory measurements of nonsuspended sediment transport driven by (a) water [16–18]
and (b) air on Earth [13,14]. Raw measurements of Ref. [18] (as reported in Ref. [34]) and Ref. [17] are corrected for sidewall drag using
the method of Ref. [35] and afterward slope-corrected through Eq. (5). Measurement data of Ref. [16] (mild bed slopes) are as reported
in that reference and not further corrected.
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overall agreement with the simulation data [26]).
Equation (1) then becomes

Q� ¼
2

ffiffiffiffiffi
Θt

p
κμb

ðΘ − ΘtÞ
�
1þ cM

μb
ðΘ − ΘtÞ

�
; ð4Þ

where we neglect potential effects of particle shape and size
distribution on cM and μb.
Equation (4) exhibits two extreme regimes, a linear

scaling Q� ∼ ðΘ − ΘtÞ for ðΘ − ΘtÞ ≪ μb=cM (typical
for aeolian transport) and a quadratic scaling Q� ∼ Θ2

for ðΘ − ΘtÞ ≫ μb=cM (typical for intense fluvial trans-
port). The latter scaling is consistent with two-phase
flow models of intense transport [30–33]. For inter-
mediate values ðΘ − ΘtÞ ∼ μb=cM, one can approxi-
mate 1þ cMðΘ − ΘtÞ=μb ≈ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cMðΘ − ΘtÞ=μb

p
, implying

Q� ∼ ðΘ − ΘtÞ3=2, which is one the most widely used
scaling laws in hydraulic engineering for the transport of
gravel by water [16]. Note that Eq. (4) requires continuous
transport conditions to be strictly valid (i.e., Θ≳ 2Θt) [1].
In particular, it is expected to underestimate measurements
for Θ≲ Θt (for which it predicts Q� ¼ 0) and overestimate
measurements for Θt ≲ Θ≲ 2Θt [1].
In order to compare Eq. (4), which has been derived for a

bed slope angle α ¼ 0, with slope-driven transport experi-
ments in water (i.e., τ ¼ ρfgh sin α, where h is the clear-
water depth), one has to replace Θ (but not Θt) and Q2� in
Eq. (4) by [26]

ðΘα; Qα2� Þ≡ ðΘ; Q2�Þ
��

cos α −
sin α
μb

s
s − 1

�
: ð5Þ

When applying this correction and using transport thresh-
old values that are close to (water) or equal to (air) those
obtained from a recent threshold model [21], Eq. (4)
simultaneously reproduces laboratory measurements of
the rate of continuous transport in water [Fig. 3(a)] and
air on Earth [Fig. 3(b)]. In particular, the agreement with
aeolian transport measurements is substantially better than
the old fitted linear model [13]. Equation (4) is also
consistent with numerical simulations (Fig. 4).
The applicability of Eq. (4) is limited to transport

conditions that exceed critical values of s1=2Ga and
s1=4Ga. The number s1=4Ga determines whether transported
particles tend to move predominantly within the log-layer
[s1=4Ga≳ 40, as required for Eq. (4)] or within the viscous
sublayer of the turbulent boundary layer (s1=4Ga≲ 40),
while s1=2Ga characterizes the importance of particle inertia
relative to viscous drag forcing [21,36]. When s1=2Ga is too
small [s1=2Ga≲ 80 for fluvial transport (s≲ 10) and
s1=2Ga≲ 200 for aeolian transport (s≳ 10)], the scaling
of the fluid drag dissipation rate of kinetic particle
fluctuation energy changes due to strong viscous drag
forcing, causing substantial deviations from Eq. (4).
Likewise, we expect Eq. (4) to break down when the

bed slope angle α comes close to the angle of repose αr, that
is, when previous studies suggest that sediment transport
properties change relatively abruptly [37].
In this Letter, we have shown that the manner in which

kinetic particle fluctuation energy is dissipated controls the
scaling of the rate Q of continuous nonsuspended sediment
transport with the fluid shear stress τ applied onto the bed.
In particular, this scaling becomes nonlinear once fluc-
tuation energy dissipation in binary particle collisions, as
opposed to dissipation in particle-bed collisions and via
fluid drag, becomes significant. This new physical
picture replaces an old, widely accepted hypothesis about
the physical origin of the scaling differences of Q.
Previously, it was hypothesized that a different predomi-
nant mode of bed sediment entrainment is responsible for
these differences [2–5,20,38]: entrainment caused by the
impacts of transported particles onto the bed (“splash”
[39–41]) in aeolian transport versus entrainment caused by
the direct action of fluid forces in fluvial transport.
However, a number of recent independent studies revealed
that impact entrainment plays a crucial role also in fluvial
transport [1,36,42–46], making it clear that a better
supported hypothesis was needed.
Our physical description has culminated in an expression

for Q that unifies transport in water and air streams without
fitting to experimental data. In combination with a previous
unification of the aeolian and fluvial transport threshold
[21], we are now able to estimate planetary sediment
transport and the evolution of planetary sediment surfaces
much more reliably than before.
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Science Foundation of China (Grant No. 11750410687).
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