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The Hofstadter problem is the lattice analog of the quantum Hall effect and is the paradigmatic example
of topology induced by an applied magnetic field. Conventionally, the Hofstadter problem involves adding
∼104 T magnetic fields to a trivial band structure. In this Letter, we show that when a magnetic field is
added to an initially topological band structure, a wealth of possible phases emerges. Remarkably, we find
topological phases that cannot be realized in any crystalline insulators. We prove that threading magnetic
flux through a Hamiltonian with a nonzero Chern number or mirror Chern number enforces a phase
transition at fixed filling and that a 2D Hamiltonian with a nontrivial Kane–Mele invariant can be classified
as a 3D topological insulator (TI) or 3D weak TI phase in periodic flux. We then study fragile topology
protected by the product of twofold rotation and time reversal and show that there exists a higher order TI
phase where corner modes are pumped by flux. We show that a model of twisted bilayer graphene realizes
this phase. Our results rely primarily on the magnetic translation group that exists at rational values of the
flux. The advent of Moiré lattices renders our work relevant experimentally. Due to the enlarged Moiré unit
cell, it is possible for laboratory-strength fields to reach one flux per plaquette and allow access to our
proposed Hofstadter topological phase.
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Introduction.—When a two dimensional crystalline
lattice in which electrons have a trivial band structure is
pierced by a uniform magnetic field, translational
symmetry is broken and the energy spectrum develops a
complex, fractal structure known as the Hofstadter
Butterfly, which hosts a wealth of nontrivial Chern number
topology despite the triviality of the original band structure
[1–13]. In this Letter, we study the Hofstadter problem for
an initially topological band structure and demonstrate new
phases not possible in crystalline insulators. We prove that
(1) a nonzero Chern number or mirror Chern number
enforces a gapless point in the bulk of the Hofstadter
Butterfly and (2) insulators with time-reversal symmetry T
(TRS) and a nontrivial Z2 invariant can be considered as
either strong or weak 3D topological insulators (TIs) in flux
and host gapless edge states. We then study insulators with
fragile topology protected by C2zT symmetry and (3) show
that the Hofstadter Hamiltonian can achieve a 3D higher
order TI (HOTI) phase characterized by corner mode
pumping. We then show that a model of twisted bilayer
graphene (TBG) realizes the HOTI phase [14].
Recently, progress in the manufacture of two dimen-

sional Moiré lattices with mesoscale effective unit cells has
brought measurements of the Hofstadter Butterfly within
reach by enabling access to large fluxes at laboratory-
strength magnetic fields [14–26]. We expect our theoretical
predictions to be verifiable in the near future, opening a
new field of Hofstadter topology.

First, we review the framework for introducing magnetic
flux on a lattice using the Peierls substitution [27].
We consider a general tight-binding model with unit
vectors a1, a2 whose lattice points we call R, with orbitals
at δα; α ¼ 1;…; Norb, and hopping elements given by
tαβðr − r0Þ; r ¼ Rþ δα; r0 ¼ R0 þ δβ. The number of
occupied bands is Nocc. We write c†R;α (cR;α) as the fermion
creation (destruction) operator of the α orbital at position
Rþ δα. We find it convenient to work in units where the
area of the unit cell, the electron charge e, and ℏ are all set
to one. By Peierls substitution, the hoppings acquire a
phase tαβðr − r0Þ → tαβðr − r0Þ exp ½i R r

r0 A · dr�. The path
of integration is a straight line between the orbitals when
they are well localized [28]. We work in the Landau gauge
AðrÞ ¼ −ϕb1ðr · b2Þ where the reciprocal vectors bi
satisfy bi · aj ¼ δij and ϕ is the flux per unit cell. In this
gauge, the hoppings retain translation invariance along a1,
but the translation symmetry along a2 is broken. However,
at rational values of the flux where ϕ ¼ ð2πp=qÞ with q, p
coprime, the hoppings recover an extended translational
symmetry: r → rþ qa2. In this case, we can diagonalize
the Hamiltonian in the 1 × q magnetic unit cell:

Hϕ ¼
X

k1;k2;α;β;r2;r02

c†k1;k2;r2;α½Hϕðk1; k2Þ�r2;α;r02;βck1;k2;r02;β: ð1Þ

Here r02; r2 ¼ 0;…; q − 1 are the coordinates of the
magnetic unit cell in the a2 direction, k1 ∈ ð−π; πÞ is the
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momentum along b1, k2 is the momentum along b2 and
takes values in ð0; 2π=qÞ due to the enlargement of the
magnetic unit cell, and Hϕ is the single-particle qNorb ×
qNorb Hamiltonian, which we will refer to as the Hofstadter
Hamiltonian. Importantly, the Hofstadter Hamiltonian is
periodic in flux up to a unitary transformation:
HϕþΦ ¼ UHϕU†, where Φ ¼ 2πn; n ∈ N is determined
by the condition that all closed hopping loops encircle an
integer number of flux quanta. In simple models such as
nearest-neighbor hopping on the square lattice, n ¼ 1 [28].
We can show [28] that

U¼ exp

�
i
X
Rα

Z
Rþδα

r0

Ã ·drc†R;αcR;α

�
; ∇× Ã¼Φ; ð2Þ

where r0 is the position of a fixed but arbitrary orbital of the
Hamiltonian, and the integral may be taken along any
sequence of Peierls paths due to the definition of Φ.
A central feature of the Hofstadter Hamiltonian is the

increased periodicity of its Brillouin zone (BZ), which can
be deduced from the magnetic translation group [29]. As
shown in Eq. (1), k2 is 2π=q periodic. Here we show that
the energy bands are also 2π=q periodic along k1. The
single-particle magnetic translation operators are

TiðϕÞ ¼
X
Rα

e
i
R

Rþδαþai
Rþδα

A·drþiχiðRþδαÞc†Rþai;α
cR;α; ð3Þ

where χiðrÞ ¼ ϕðai × rÞ · ẑ has been determined by requir-
ing ½Hϕ; TiðϕÞ� ¼ 0, and the integral is taken along a
straight-line path [28]. While the translation operators
commute in the absence of flux, otherwise we find
T1ðϕÞT2ðϕÞ ¼ eiϕT2ðϕÞT1ðϕÞ. However, at rational flux

ϕ ¼ ð2πp=qÞ, we see ½T1ðϕÞ; Tq
2ðϕÞ� ¼ 0. Hence

Hϕ; T1ðϕÞ, and Tq
2ðϕÞ commute and eigenstates may be

written as jm; k1; k2i with corresponding eigenvalues
ϵmðkÞ; eik1 ; eiqk2 , with m ¼ 1;…qNorb [see Eq. (1)].
Because ½Hϕ; T2ðϕÞ� ¼ 0, the states Tj

2ðϕÞjm; k1; k2i
also have energy ϵmðkÞ. The k1 momentum of
such states is deduced from T1ðϕÞðTj

2ðϕÞjm; k1; k2iÞ ¼
eiðk1þjϕÞTj

2ðϕÞjm; k1; k2i and hence they represent the new
states at k1 þ jϕ [28]. Thus, we find

Tj
2ðϕÞjm;k1; k2i∼ jm;k1 þ jϕ; k2i; j¼ 0;…; q− 1 ð4Þ

are all degenerate in energy. Recalling that k2 ∈ ð0; 2π=qÞ,
we conclude that the magnetic BZ has an increased
periodicity: ϵnðkÞ ¼ ϵn½kþ ð2π=qÞbi�, i ¼ 1, 2. This fea-
ture is essential in the following proofs.
Chern insulators.—As a warmup, we study the

Hofstadter Butterfly of a Chern insulator. According to
the Streda formula [5], the filling of a state with fixed a
nonzero Chern number changes as the flux is increased. In
the paradigm of Hofstadter topology, we prove a comple-
mentary result: at fixed filling, the many-body gap of a
Chern insulator has a discontinuity at ϕ ¼ 0 enforced by a
mismatch between the Chern number at zero flux and any
infinitesimal flux.
Consider a Hamiltonian Hϕ¼0 that is gapped with a

nonzero Chern number Cϕ¼0 at filling ν ¼ Nocc=Norb. We
emphasize that we keep ν fixed as the flux is increased.
Now we choose a flux ϕ ¼ ð2πp=qÞ such that
Cϕ¼0=q ∉ Z. The magnetic unit cell of Hϕ contains
qNorb orbitals and qNocc occupied bands at filling ν.
First, we introduce an on-site potential term of overall
amplitude M to Hϕ¼0 that creates an energy splitting
between each of the orbitals. For sufficiently large M,

FIG. 1. Hofstadter butterflies. (a) We consider a C ¼ 1 Chern insulator with the half filling many-body gap shaded in orange [28]. At
zero flux, the gap is ∼1, but when the flux is increased at constant filling, the gap discontinuously closes at infinitesimal ϕ. Notably, this
discontinuity is impossible to realize in any crystalline system and relies on the infinitely large magnetic unit cell as ϕ → 0. (b) We
consider the Hofstadter spectrum of a modelH0

QSH with a nonzero mirror Chern number and all symmetries broken except forMz and T
[28]. The gap closing at finite ϕ is protected by Mz; breaking it allows a gap to open in the bulk. (c) We show the Hofstadter Butterfly
calculated on a 30 × 30 lattice for H00

QSH, a variation whereMz is broken and T is the only symmetry [28]. The bulk spectrum (black) is
gapped, but the edge spectrum (red) is gapless at ϕ ¼ 0. As the flux is increased to ϕ ¼ π, the edge states gap and move into the bulk. We
also observe quantum Hall states at all fluxes and fillings where νNorb ∉ N. This is explained by the Diophantine equation, which can be
written ðϕ=2πÞC ¼ Norbν mod 1 [8].
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the model will be split into Norb trivial bands, and it will
reach a gapped atomic limit for all ϕ [28,30,31].
As we tune M from zero to infinity, gap closings occur

that eventually cause Hϕ¼ð2πp=qÞ to undergo a series of
phase transitions into a trivial atomic limit [28] at filling
ν ¼ qNocc=qNorb [32], recalling that the change in Chern
number is determined locally by the closing bands
[5,33,34]. If there is gap closing at k�, there must also
be an identical gap closing at the each of the points k� þ
jϕb1 mod 2π; j ¼ 1;…q − 1 due to the magnetic BZ
periodicity of Eq. (4). Because a multiple of q gap
closings separate Hϕ from the trivial atomic limit at large
M where the Chern number is zero, it must be that
Cϕ¼ð2πp=qÞ≠0 ∈ qZ, zero included. Hence, we recover the
result of Ref. [8] using a proof applicable to the next
section.
Since we chose q such that Cϕ¼0 ∉ qZ, we find by

construction that the Chern number has changed during an
adiabatic perturbation ofHϕ. But this is only possible if the
gap closes for ϕ ∈ ½0; ð2πp=qÞ�. For every Cϕ¼0, we may
choose an arbitrarily large q, allowing us to conclude that,
at fixed filling, the many-body gap must close immediately
when the flux is increased from the fine-tuned point at
ϕ ¼ 0 [28]. This enforces a discontinuity in the occupied
states as shown for a typical Chern insulator in Fig. 1(a).
There is no protected gap closing if Cϕ¼0 ¼ 0 because a
vanishing Chern number is possible for all flux at filling
ν ¼ Nocc=Norb.
We now extend this result to insulators with a nonzero

mirror Chern number [35,36]. Because mirror symmetry
Mz is not broken in the presence of flux, Mz remains well-
defined at all ϕ. Then we may block-diagonalizeHϕ at all ϕ
by its mirror eigenvalues. Each block has a nonzero Chern
number at ϕ ¼ 0, and thus the gap closes immediately at
ϕ ¼ 0 and filling ν within each individual block. Each
block must have a branch of its spectrum connecting its
valence and conduction bands. Hence for any Fermi energy
in the zero-flux gap, there will be a gapless point at finite
flux in the spectrum of the whole model [28]. In Fig. 1(b),
we consider the quantum spin Hall model HQSH of
Ref. [35] with a nonzero mirror Chern number. We show
numerical confirmation that, although the Chern number is
identically zero due to TRS, the gap still closes due to the
mirror Chern number.
Time-reversal invariant insulators.—We show in this

section that when a Hofstadter Hamiltonian with spinful
TRS T is topological (in a quantum spin Hall state) at
ϕ ¼ 0, it realizes a nontrivial 3D phase where the flux ϕ is
identified with kz [35,37,38]. Recall that Hϕ is Φ ¼ 2πn
periodic in flux. When n is odd, Hϕ is classified as a 3D TI
and may be a weak TI or 3D TI when n is even. However, it
can never be 3D trivial.
The identification of ϕ with kz is deduced from its

transformation under T . Because T is antiunitary, it flips
the sign of ϕ in the Peierls substitution and hence

T −1HϕðkÞT ¼ H−ϕð−kÞ: ð5Þ

Let us first consider the simple case of Φ ¼ 2π, i.e., n ¼ 1.
Then ϕ is 2π periodic and behaves as kz would in a 3D
Hamiltonian. Furthermore, we recall thatHϕþΦ ¼ UHϕU†,
so from

ðUT ÞHπðUT Þ† ¼ UH−πU† ¼ Hπ ð6Þ

we see thatUT is a symmetry ofHϕ¼π . It can be shown that
ðUT Þ2 ¼ T 2 ¼ −1 [28], so Hπ also has a Z2 topological
classification. For pedagogical purposes, we assume that U
is diagonal in momentum space. In the generic case, the
algebra of UT and TiðϕÞ acquires a projective phase that
leads to an off-diagonal representation of UT on the
magnetic BZ [28].
Considering Hϕ as a 3D model with T symmetry, its

topology is characterized by the magnetoelectric polar-
izability θ ∈ f0; πg, where π is the nontrivial value of the
3D TI phase. θ is related to the Pfaffian Z2 invariants by
eiθ ¼ δϕ¼0 × δϕ¼π , where δϕ ∈ f−1; 1g is protected by T
(UT ) at ϕ ¼ 0 (π) [39–41]. Because we assume that Hϕ¼0

is nontrivial, we need only show that δϕ¼π ¼ þ1 in order to
prove θ ¼ π. To do so, we introduce the parameter M,
which tunes the Hϕ to a trivial atomic limit as described in
the previous section. Now consider the magnetic BZ at
ϕ ¼ π with k1 ∈ ð−π; πÞ; k2 ∈ ð0; πÞ. Equation (4) requires
the BZ to be π periodic, ϵmðkþ πb1Þ ¼ ϵmðkÞ. As
M → ∞, we determine the change in δϕ¼π by counting
gap closings in half of the magnetic BZ defined by BZ1=2 ¼
k1 ∈ ð−π; πÞ; k2 ∈ ð0; π=2Þ [40,42,43]. If there is a gap
closing at k� ∈ BZ1=2, there is a second identical closing at
k� þ πb1 ∈ BZ1=2. Each gap closing changes the sign of
δϕ¼π , so it must be that δπ¼ϕ ¼ þ1 because an even number
of gap closings occur between M ¼ 0 and the trivial phase
atM ¼ ∞. We conclude θ ¼ π, proving that the Hofstadter
Hamiltonian is a 3D TI. On open boundary conditions
(OBC), such a model will pump gapless edge states into the
bulk as ϕ is increased, as exemplified in Fig. 1(b). There,
for a perturbed model with only T symmetry H00

QSH [28],
we observe gapless edge states for small flux and their
disappearance into the bulk.
The π periodicity in the magnetic BZ was crucial to

proving thatHϕ¼π is trivial. Generally, ifΦ ¼ 2πn, then the
UT -symmetric point exists at Φ=2 ¼ nπ. When n is odd,
the energy spectrum is still π periodic along k1, and we
conclude that δϕ¼nπ ¼ þ1 [28]. However when n is even,
this π periodicity is absent, so our proof fails, and indeed,
Hϕ can be a weak or strong 3D TI [28].
Fragile topological insulators.—So far we have studied

the Hofstadter topology deriving from strong topological
2D phases with a nontrivial Chern number, the mirror
Chern number, or the Z2 index. We now consider a fragile
invariant: the second Stiefel–Whitney index w2 ∈ f0; 1g
protected by C2zT [with ðC2zT Þ2 ¼ þ1] [14,44–46].
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A nontrivial value of w2 ¼ 1 indicates fractional corner
states [44,47–50] and may be computed in the bulk from
the Wilson loop eigenvalues or the nested Wilson loop
[44,51,52].
The 3D HOTI phase is characterized by pumping corner

states between a w2 nontrivial phase and trivial phase
[36,53]. Because ðC2zT Þ−1HϕðkÞðC2zT Þ ¼ H−ϕðkÞ, we
can again identify ϕ with kz and use 3D topological
invariants to classify Hϕ, which we now discuss.
We have assumed that C2zT is a symmetry of Hϕ¼0 and

protects the invariant wϕ¼0
2 . For a Hofstadter Hamiltonian

that has a Φ ¼ 2πn periodicity in flux, the other symmetric
point occurs at ϕ ¼ Φ=2 where HΦ=2 has the symmetry
UC2zT . We can show that ðUC2zT Þ2 ¼ �1, where the sign
must be calculated from the Peierls paths [28]. The
Hofstadter topological invariant depends on this sign.
If ðUC2zT Þ2 ¼þ1, a nonzero value of θ=π ¼ wϕ¼0

2 −
wϕ¼Φ=2
2 indicates corner state flow. The nontrivial phase

with θ ¼ π is a “strong” symmetry-protected topological
phase with corner state pumping. [53–57].
If ðUC2zT Þ2 ¼ −1, there is no w2 index at ϕ ¼ Φ=2

[44]. However, we can diagnose the topology directly

as a consequence of Kramers’ theorem. Because
ðUC2zT Þ2 ¼ −1, the states at C2z-invariant positions must
come in pairs at ϕ ¼ Φ=2 and hence can always be
removed from these positions without breaking the sym-
metry. Heuristically, these Kramers’ pairs trivialize the
bulk, and by the bulk-boundary correspondence, the model
remains trivial with OBC [58–62]. This is confirmed
explicitly by calculating the nested Wilson loop [28].
Thus, we find that θ=π ¼ wϕ¼0

2 only depends on the
zero-field topology.
To exemplify the Hofstadter HOTI phase, we now

consider HTBG: a four-band model of TBG with
C2x; C3z; C2z, and T symmetries that possesses fragile
Wilson loop winding yielding wϕ¼0

2 ¼ 1 [14,63]. We study
a perturbed model H0

TBG that has only C2zT to protect the
fragile topology [28,64]. The Hofstadter Hamiltonian has
Φ ¼ 6π and ðUC2zT Þ2 ¼ þ1 [28]. In Fig. 2(a), we
calculate the Hofstadter Butterfly with OBC and observe
the pumping of corner modes (with a gapped bulk and
edge) that characterizes a HOTI. We show that θ ¼ π by
calculating the w2 indices at ϕ ¼ 0, Φ=2 from the Wilson
loop spectra shown in Figs. 2(b) and 2(c) [28,65]. Breaking
the C2z and C2xT symmetries of HTBG (which are not true
symmetries of TBG) is crucial. Both symmetries are
preserved at all ϕ and can enforce a bulk gap closing
[28,66–68], which would disrupt the appearance of the
HOTI phase.
Discussion.—The topological phases of the Hofstadter

Hamiltonian can be computed in the momentum-flux
manifold. We demonstrated that a nonzero Chern number
or mirror Chern number enforces a level crossing in the
bulk as flux is pumped through the crystal. In analogy to the
3D classifications, we call this a topologically protected
Hofstadter semimetal. The Hofstadter topology of a
Hamiltonian with a nontrivial Z2 index depended on the
flux periodicity Φ ¼ 2πn. When n is odd, we proved that
the Hofstadter realized a 3D TI phase where the flux pumps
edge states into the bulk. Finally, we considered fragile
topology at zero flux given by nonzero w2 index and found
that the topological index of the Hofstadter Hamiltonian
depended on the sign of ðUC2zT Þ2 ¼ �1 through the
Peierls paths. This is notably different from crystalline
systems where ðC2zT Þ2 ¼ þ1 with and without spin-orbit
coupling. In the strong Hofstadter HOTI phase, realized by
a model of TBG, the flux pumps corner states into the bulk.
We expect the results of this work to be experimentally

verifiable using Moiré lattices, which have very large unit
cells at small twist angles [19]. Indeed, after the submission
of this work, Ref. [69] observed signatures of fragile
Hofstadter topology in a TBG system, and Ref. [70]
identified the flux-induced gap closings indicative of
a Hofstadter semimetal protected by a valley Chern
number in twisted double bilayer graphene. Both experi-
ments show that realistic magnetic fields can probe the
Hofstadter phase.

(a)

(b) (c)

FIG. 2. Twisted bilayer graphene. (a) The Hofstadter Butterfly
is calculated on a 30 × 30 lattice for H0

TBG, which has only C2zT
symmetry [28]. The corner modes are shown in red over the
gapped black bulk and edge spectrum and pump between the
nontrivial w2 ¼ 1 phase at ϕ ¼ 0 and the trivial phase at ϕ ¼ 3π,
where w2 ¼ 0. This model is classified as a HOTI. (b) We observe
from the Wilson loop spectrum, with eigenvalues exp iϑðk1Þ, that
wϕ¼0
2 ¼ 1 due to the odd number of crossings at ϑ ¼ 0 and ϑ ¼ π

[44]. (c) The Wilson spectrum at ϕ ¼ 3π is calculated in an
extended 2 × 2 unit cell where U is diagonal in momentum space
[28]. Here, wϕ¼3π

2 ¼ 0 because there are no crossings at ϑ ¼ 0
and ϑ ¼ π.
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