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We study quantum phase transitions in graphene superlattices in external magnetic fields, where a
framework is presented to classify multiflavor Dirac fermion critical points describing hopping-tuned
topological phase transitions of integer and fractional Hofstadter–Chern insulators. We argue and provide
numerical support for the existence of transitions that can be explained by a nontrivial interplay of Chern
bands and van Hove singularities near charge neutrality. This work provides a route to critical phenomena
beyond conventional quantum Hall plateau transitions.
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Chern bands [1,2] are the building blocks of the
Hofstadter spectrum [3] when a large magnetic flux (of
order ϕ0 ¼ h=e) penetrates the unit cell of the 2D lattice.
They give rise to quantum Hall phases beyond the Landau
level (LL) paradigm, which has attracted considerable
interest [4–8]. Rapid progress in the fabrication of super-
lattices with nanometer scale unit cells has led to the
experimental realization of integer [9–12] and fractional
[13] Hofstadter–Chern insulators (IHCI and FHCI), thereby
opening remarkable prospects to explore the nontrivial
interplay of lattice effects and electronic topology that is
inaccessible in regular 2D lattices.
Topological ground states supported in Chern bands

have been broadly studied using different approaches,
including numerical methods [4–8,14–16], composite
fermions [17–22], and Lieb–Schultz–Mattis-type con-
straints [23]. On the other hand, the fundamental influence
of lattice parameters on topological phase transitions
(TPTs) in IHCIs and FHCIs has received significantly less
attention [24–26]. The complexity of the Hofstadter spec-
trum and the finite bandwidth of Chern bands that reflects
their dependence on the lattice parameters and on the intra-
cell magnetic flux appears to stand in the way of an
overarching understanding of lattice-tuned TPTs, which are
distinct from plateau transitions tuned by the magnetic
field [27,28].
In this Letter, we provide a classification of TPTs in

IHCIs and FHCIs and present a mechanism for quantum
criticality tuned by lattice parameters with a fixed back-
ground magnetic field. Numerical studies [24,26] strongly
support the existence of continuous TPTs tuned by the
amplitude of a square lattice weak potential projected on
the lowest LL. This work, on the other hand, employs an
effective tight-binding description (i.e., “strong” potential)
of a honeycomb superlattice with the magnetic field
incorporated via Peierls substitution and discusses

topological transitions tuned by hopping amplitudes of

the lattice. Graphene superlattices realized via nanolithog-
raphy [29–34] not only provide a motivation for this study
but also offer promising test beds of these ideas.
The main results presented in this Letter are as follows:

(1) We show that hopping-tuned TPTs on the honeycomb
lattice with a fixed rational intracell magnetic flux ϕ ¼
ðp=qÞϕ0 are characterized by q Dirac fermions (DFs)
located in high-symmetry momenta of the magnetic
Brillouin zone. The number of DF flavors and their
momentum space distribution are derived analytically from
a nontrivial function that implicitly sets the momentum
dependence of all the Chern bands of the spectrum. (2) We
establish a surprising connection between van Hove sin-
gularities (VHSs) [35] and the onset of TPTs near charge
neutrality. (3) This nonperturbative analysis is extended to
hopping-tuned FHCI transitions described by composite
fermions [17–22] in partially filled Chern bands.
Our setting is a honeycomb superlattice in a

external perpendicular magnetic field, B ¼ ∂xAy − ∂yAx,
described by the single-particle nearest neighbor effective
Hamiltonian

H ¼ −
X
hr;r0i

tr;r0e
ið2π=ϕ0Þ

R
r0
r
dx·AðxÞa†rbr0 þ H:c: ð1Þ

a†r ¼ a†m;n and b†r ¼ b†m;n are spin polarized fermionic
creation operators on the two sublattices r ¼ ma1 þ na2,
m, n ∈ Z is the lattice vector with basis vectors
a1 ¼ að3=2;− ffiffiffi

3
p

=2Þ, and a2 ¼ að3=2; ffiffiffi
3

p
=2Þ, and tr;r0 ¼

ft1; t2; t3g are nearest neighbor real hopping elements, as
shown in (a) in Fig. 1.
Working in the gauge A ¼ ŷðxþ ffiffiffi

3
p

yÞB with rational
flux ϕ ¼ Bð ffiffiffi

3
p

=2Þa2 ¼ ðp=qÞϕ0 (p, q ∈ Zþ and
coprime), we introduce the magnetic unit cell containing
2q sites as in Fig. 1(a), which leads to the k-space
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Hamiltonian [36] H ¼ −
P

k∈MBZ ψ
†
kτ1 ⊗ hkψk, where

k ¼ ðk1; k2Þ≡ k1g̃1 þ k2g̃2 is the momentum expanded
along the reciprocal lattice vectors g̃1;2.
Aiming at a nonperturbative description of the Chern

bands beyond the isotropic lattice t1 ¼ t2 ¼ t3 [37–39], we
establish the spectral function PðEÞ ¼ det ðEI −HÞ,

PðEÞ ¼
Xq
n¼1

anðftigÞE2n − ξ2ðftig; k1; k2Þ; ð2aÞ

ξðftig; k1; k2Þ ¼ jtq1eiqk1−iπðq−1Þ þ tq2e
ik2 þ tq3j ≥ 0: ð2bÞ

Equation (2) encodes a remarkable property of the
Hofstadter spectrum (originally noticed by Thouless in a
different context [40]; see also [37]), namely, that
the momentum dependence of the bands is “compressed”
in a single function ξðkÞ, i.e., EαðkÞ ¼ Eα½ξðkÞ� for
α ¼ 1;…; 2q. Figures 1(b) and 1(c) shows how the energy
bands depend on the “Thouless function” ξ, which
we notice is related to the graphene band [41]
upon the replacements ðk1;k2Þ→ ½qk1−πðq−1Þ;k2� and
ftig→ftqi g.
IHCI transitions.—We now establish a classification of

TPTs in the parameter space ðt1; t2; t3Þ. On general
grounds, consider a TPT tuned by the hopping parameters
where two Chern bands touch at ðξF; EFÞ, where ξF ≠ 0
and EF ≠ 0 is the Fermi energy. [ðξF ¼ 0; EF ¼ 0Þ band
touchings will be discussed shortly after.] Let PðEÞ ¼Pq

n¼1 cnðE2 − E2
FÞn − ðξ2 − ξ2FÞ be the Taylor expansion

of the characteristic polynomial Eq. (2a) about the band
touching point. The even powers of E in Eq. (2a) reflect the
spectral particle-hole symmetry, and, since �EF ≠ 0 are
doubly degenerate roots of the characteristic polynomial, it
follows that PðEÞ ¼ ðE2 − E2

FÞ2gðEÞ, where gðEÞ is a
polynomial in E of order 2ðq − 2Þ. This readily implies
the coefficient c1 ¼ 0, leading to the relation in the vicinity
of the touching point

ξ ≈ ξF þ 2c2E2
Fξ

−1
F ðE − EFÞ2; ξF ≠ 0: ð3Þ

Consequently, the sign of c2 determines whether the
transition occurs through the quadratic minimum
(ξF ¼ ξmin > 0) or maximum (ξF ¼ ξmax > 0) of the
Thouless function. Furthermore, upon expanding
near the extremal points, i.e., ξðkÞ ≈ ξminðmaxÞ þ
a=2½k − kminðmaxÞ�2 [with a > 0ð< 0Þ being the nonzero
curvature at the quadratic minima (maxima)], and sub-
stituting onto Eq. (3), we obtain the dispersion

E−EF¼�v�Fjk−kminðmaxÞj; v�F¼ðaξF=4c2E2
FÞ1=2 ð4Þ

characteristic of a Dirac cone centered at kminðmaxÞ. It can be
shown that higher order band touchings are forbidden.
Importantly, we establish below that ξ has q minima and
maxima, implying a q-component Dirac transition.
Figure 2 presents two IHCI TPTs for ϕ ¼ ϕ0=7 that
confirm the general behavior described in Eqs. (3) and
(4). The considerations above, therefore, uncover a non-
trivial link between the classification of critical points and
the global properties of the Thouless function, which we
now address in detail.
Eq. (2a) establishes a one-to-one correspondence

between the zero modes of ξ and band touchings at
E ¼ 0, where E ≈�ξ=a1=21 . Then, we directly determine
from Eq. (2b) that the band structure with isotropic
hoppings supports 2q Dirac touchings at E ¼ 0 [42–44]
located at

KðnÞ
� ¼

�
� 2π

3q
þ π

q
ð2nþ q − 1Þ;∓ 2π

3

�
ð5Þ

for n ¼ 0;…; q − 1, and, furthermore, that these band
touchings persist as long as

����jtijq − jtjjq
���� ≤ jtkjq ≤

����jtijq þ jtjjq
����; ð6Þ

FIG. 2. TPTs of the ϕ ¼ ð1=7Þϕ0 lattice (α denotes band
index). (a) At ðt1; t2; t3Þ ¼ ð1.24; 1; 1Þ, 7 Dirac cones (only
one shown) form at kðnÞmin ¼ ð−π=7þ 2πn=7; 0Þ, n ¼ 0;…; 6.
(b) At ðt1; t2; t3Þ ¼ ð2.73; 1; 1Þ, 7 Dirac cones (only one shown)
form at kðnÞmax ¼ ð2πn=7; 0Þ, n ¼ 0;…; 6.

FIG. 1. Parameterization of the Hofstadter-Chern bands by the
Thouless function. (a) Honeycomb superlattice with lattice
constant a in the nanometers and magnetic unit cell q times
extended along a2. (b) Momentum dependence on the Thouless
function ξ. (c) Spectrum as function of ξ for ϕ ¼ ð1=3Þϕ0.
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where i, j, k are identified with any of the distinct values of
1,2,3. Equation (6) is the condition for ξ ¼ 0, which,
reproduces the stability of the pair of Dirac cones in
graphene bands when q ¼ 1 [45,46]. The global properties
of the Thouless function lead to a remarkably simple
classification of critical points: (1) When the Eq. (6)
condition holds, ξ ≥ 0 and there are 2q Dirac band touch-
ings at ðξ ¼ 0; E ¼ 0Þ as a consequence of particle-hole
symmetry. Furthermore, TPTs at nonzero Fermi energy

occur through q Dirac band touchings located at kðnÞmax ¼
½πð2nþ q − 1Þ=q; 0�, n¼0;…;q−1, where ξ½kðnÞmax� ¼
ξmax. However, ξ ¼ ξmin ¼ 0 transitions are forbidden at
E ≠ 0 by particle-hole symmetry[36]. (2) Outside the
parameter space, Eq. (6), ξ > 0 and the spectrum has a
gap at half filling. The 2q zero modes of ξ merge pairwise
forming q quadratic minima at one of the saddle points

MðnÞ
1 ¼½πð2nþq−1Þ=q;−π�, MðnÞ

2 ¼½−π=qþπð2nþq−1Þ=
q;0�, or MðnÞ

3 ¼ ½−π=qþ πð2nþ q − 1Þ=q;−π� for n ¼
0;…; q − 1. Then, EF ≠ 0 critical points are realized by
q Dirac band touchings located either at ξmin or ξmax.
Taking, for concreteness,

t2 ¼ t3 ¼ 1; t1 > 0 ð7Þ

leads to case (1) for 0 < t1 ≤ 21=q and case (2) when
t1 > 21=q, where the q degenerate minima of ξ are located

at kðnÞmin ¼ MðnÞ
2 , for n ¼ 0;…; q − 1. The TPTs of Fig. 2

correspond to case (2) with the hopping parameters,
Eq. (7). (3) The q Dirac fermions at quantum criticality
are constrained by the action of magnetic translation, under
which ðk1; k2Þ → ðk1 þ 2π=q; k2Þ, and they account for the
transfer of Chern number ΔC ¼ �q between the bands,
according to standard parity anomaly considerations [47].
We have performed extensive numerical calculations that
confirm the properties (1), (2), and (3).
Having classified the IHCI critical points, we now

address the mechanism underlying such phenomena, which
must account for ΔC ¼ �q transitions in a spectrum
composed primarily of bands in which C ∼Oð1Þ.
Remarkably, we argue and numerically demonstrate that
ΔC ¼ �q TPTs occur when Chern bands cross the energy
scales associated with the VHS of the DF band close to
charge neutrality. In what follows, we shall demonstrate
this striking phenomenon using the hopping t1 in Eq. (7) as
the tuning parameter.
To unearth the connection between VHSs and TPTs,

we consider two Hofstadter systems, denoted A and B,
with fluxes ϕA ¼ pA=qA and ϕB ¼ pB=qB [henceforth
we set h ¼ e ¼ 1 such that ϕ0 ¼ 1 and ϕ ∼ ϕ mod (1)].
Furthermore, we impose the conditions (a) jðϕA − ϕBÞ=
ϕ0j ≪ 1 and (b) qB⪊qA, which associate the spectrum of B
with subbands of the A system that arise due to a small
residual flux. By this construction, the B bands away from
the VHS energy EA

VHS behave as pseudo-LLs (pLL) of the

A system with CpLL ∼Oð1Þ. Consequently, we argue, and
numerically confirm, that EA

VHS provides the natural energy
scale supporting nontrivial VHS-Chern bands of B with
CVHS ∼OðqBÞ. Therefore, the dependence of EA

VHS on
hopping parameters reveals the location of the nontrivial
TPTs of B characterized by ΔC ¼ �qB.
To gain further insight on the relation between

VHSs and TPTs, we initially consider system A with
ti ¼ 1, which displays 2qA DFs at half filling with
EA
DiracðkÞ ≈ ξAðti ¼ 1; k − K�Þ=a1=21 ; see Eq. (5). Due to

particle-hole symmetry, we focus on E ≥ 0 bands. General
considerations give the Dirac-like density of states (DOS)
DA ∝ E near charge neutrality, which is cut off by the
VHS energy EA

VHS that distinguishes the electronlike states
from the holelike states. Figure 3(a) displays the DOS of
this band for ϕA ¼ 1=4, which supports eight Dirac
fermions and has EA

VHS ≈ 0.15. Notice that, compared to
the graphene bands [41], the magnetic field pushes the
VHS substantially closer to charge neutrality due to the
splitting of the spectrum into 2qA bands. Furthermore,
conditions (a) and (b) ensure the spectrum of B near half
filling can be understood as the response of the DF band of
A to a weak “residual” magnetic field, which is expected
to give rise to relativisticlike (nonrelativisticlike) LLs for
E≲ ð≳ÞEA

VHS. However, the B bands close to EA
VHS

deviate substantially from the LL behavior, confirming
the behavior described in the paragraph above. This is
illustrated in Fig. 3(b) where the said bands of the ϕB ¼
11=45 system show more pronounced bandwidths and
narrower gaps.

FIG. 3. Comparison between the density of states of system A
and B. (a) DOS of the Dirac center band at ϕA ¼ ð1=4Þϕ0 and
ðt1; t2; t3Þ ¼ ð1; 1; 1Þ. Inset: eight gapless DFs with locations
given by Eq. (5). (b) DOS at ϕB ¼ ð11=45Þϕ0 and ðt1; t2; t3Þ ¼
ð1; 1; 1Þ reflecting the reconstruction of the Dirac band in (a).
(c) DOS of the Dirac center band at ϕA ¼ ð1=4Þϕ0 and
ðt1; t2; t3Þ ¼ ð1.441; 1; 1Þ. Inset: eight gapped DFs with the
gap-opening threshold t1 ¼ 21=4 ≈ 1.19. (d) DOS at ϕB ¼
ð11=45Þϕ0 and ðt1; t2; t3Þ ¼ ð1.441; 1; 1Þ reflecting the
reconstruction of the gapped Dirac band in (c). Inset shows
emergent Dirac fermions at the critical point.
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To understand how EA
VHS tracks the TPTs of the B

system, we study the dependence of Thouless function on
the hopping parameters. The property EαðkÞ ¼ Eα½ξðkÞ�
establishes that the VHSs of the Chern bands are located on
the saddles of ξ. Direct calculation shows that ξ is
degenerate on all the saddle points MðnÞ

1;2;3 when t1 ¼ 1
and, furthermore, that the degeneracy is partially broken for
t1 ≠ 1 [36]. For 1 < t1 < 21=q [case (1) above], the VHS
splits into a large peak at EA

VHS;1 ≡ EA½MðnÞ
1 � and a small

peak at EA
VHS;2 ≡ EA½MðnÞ

2 �. The latter disappears in the
lower band edge, for t1 > 21=q [case (2) above], where an
energy gap forms [Fig. 3(c)]. Moreover, Fig. 3(d) (see inset)
displays the onset of a TPT as the result of the VHS-Chern
bands being steered by the EA

VHS;1 energy scale.
The striking relationship between VHS and TPTs is

shown in Fig. 4, where the bands of the ϕB ¼ pB=qB ¼
11=45 system near charge neutrality are plotted in the
interval t1 ≥ 1. These bands originate as subbands of the
ϕA ¼ pA=qA ¼ 1=4 Dirac band in response to a small flux
deviation δϕ ¼ −1=180, as per conditions (a) and (b). We
observe that the B bands formed near the band edges of
system A behave as pLLs with vanishing bandwidth and
CpLL ¼ −4, while the VHS-Chern bands carrying CVHS ∼
OðqBÞ form in the vicinity of EA

VHS. Because E
A
VHS changes

with the hopping parameters, the change in t1 away from
the isotropic point steers the VHS-Chern bands of B along
the solid green (EA

VHS;1) and purple (EA
VHS;2) lines. This

VHS steering mechanism reveals a sequence of TPTs (up
arrows) characterized by ΔC ¼ �45, with 45 emerging
DFs located at the extremum points of the Thouless
function of the system B, confirming the general properties

(1), (2), and (3). For results on other flux states, see the
Supplemental Material [36].
FHCI transitions.—Our analysis can be further extended

to describe FHCI transitions tuned by the hopping para-
meters in partially filled Chern bands via the standard
representation of an FHCI with Hall conductance
σxyðCÞ ¼ C=ð2Cþ 1Þ in terms of a composite fermion
system [17,18,48] in an IHCI with σCFxy ¼ C [19,20], which
is subject to a mean field residual flux:

ϕCF ¼ ϕ − ϕCS; ð8Þ

where ϕ ¼ Bð ffiffiffi
3

p
=2Þa2 and ϕCS ¼ 4n (the factor of 4

accounts for two attached flux quanta and two sites per unit
cell) are, respectively, the intracell fluxes due to the external
magnetic field and the Chern–Simons gauge field at lattice
filling n, for 0 ≤ n ≤ 1. Then, a TPT at fixed B and n
between FHCIs with σxyðC1Þ ¼ C1=ð2C1 þ 1Þ and
σxyðC2Þ ¼ C2=ð2C2 þ 1Þ can be effectively described by
a C1 → C2 composite fermion transition subject to the
constraint jC2 − C1j ¼ qcf [recall property (3)], where
ϕCF ¼ pcf=qcf is the flux of the composite fermion state.
Furthermore, the relationship Eq. (8) between B and n
allows the identification of candidate TPTs between
Abelian FHCI states. In closing, we present two such
FHCI transitions realized when ϕCF ¼ 11=45, which are
shown by vertical red arrows in Fig. 4. The first TPT is
observed at (t1 ≈ 1.02; n ¼ 47=9;ϕ ¼ 1=3) and represents
a transition between FHCIs with σxyð37Þ ¼ 37=75
and σxyð−8Þ ¼ 8=15. On the second transition at
(t1 ≈ 1.44; n ¼ 50=90 ¼ 5=9;ϕ ¼ 7=15), the Hall con-
ductance jumps from σxyð25Þ ¼ 25=51 to σxyð−20Þ ¼
20=39. We point the reader to the Supplemental Material
[36] for another example of FHCI transition.
In summary, we have proposed an analytical framework

to classify multiflavor Dirac fermion critical points describ-
ing hopping-tuned TPTs of integer and fractional
Hofstadter–Chern insulators in honeycomb superlattices.
Our classification sets firm constraints on the number of
Dirac flavors as well as their momentum space distribution
in terms of the hopping parameters, the magnetic flux per
unit cell, and the electron density. Such critical points
realize large transfers of Chern numbers across the TPT,
which can be detected via conductivity measurements. We
have identified a series of TPTs that can be explained by the
nontrivial response of Chern bands to VHSs near charge
neutrality. These results, which were derived from the
identification of global properties of the Chern bands, lead
to a new understanding of quantum critical phenomena
resulting from the interplay of magnetic fields and VHSs.
This work opens many interesting directions to study
quantum critical phenomena in superlattices. Besides nano-
patterned graphene superlattices [29–34] that served as a
motivation for this work, van der Waals heterostructures in
external magnetic fields [9–11,13] provide promising

FIG. 4. TPTs of system B (ϕB ¼ 11=45) steered by the VHSs
of system A (ϕA ¼ 1=4). Eleven B bands form near charge
neutrality by splitting of the Dirac band of A in response to a flux
deviation δϕ ¼ −1=180, where nine of these bands are shown.
All energies are rescaled by the average band separation w of the
B system with t1 ¼ 1. The Chern numbers of the bands are
indicated by color coding. EA

VHS;1 and EA
VHS;2 are represented,

respectively, by solid green and purple lines. The composite
fermion (IHCI) TPTs at n ¼ 47=90 and n ¼ 50=90 (n ¼ 49=90)
are marked by vertical red (black) arrows.
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platforms to realize topological quantum criticality via
strain induced tuning of the effective hopping parameters.
Also, the interplay of magnetic fields and higher order
VHSs [49,50] can potentially provide even richer critical
phenomena. We leave these open questions to future work.

We thank Claudio Chamon, Ankur Das, Ribhu Kaul,
Ganpathy Murthy, and Raman Sohal for useful discussions.
Part of this work was performed at the Aspen Center for
Physics, which is supported by National Science
Foundation Grant No. PHY-1607611. L. H. S. is supported
by a faculty startup at Emory University.

Note added in proof.—Recently, we became aware of a
related Letter, Ref. [51], which studies quantum phase
transitions in Hofstadter bands by tuning the magnetic flux
per unit cell.
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