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We present a method that enables solid-state density functional theory calculations to be applied to
systems of almost unlimited size. Computations of physical effects up to the micron length scale but which
nevertheless depend on the microscopic details of the electronic structure, are made possible. Our approach
is based on a generalization of the Bloch state, which involves an additional sum over a finer grid in
reciprocal space around each k point. We show that this allows for modulations in the density and
magnetization of arbitrary length on top of a lattice-periodic solution. Based on this, we derive a set of ultra-
long-range Kohn-Sham equations. We demonstrate our method with a sample calculation of bulk LiF
subjected to an arbitrary external potential containing nearly 3500 atoms. We also confirm the accuracy of
the method by comparing the spin density wave state of bcc Cr against a direct supercell calculation starting
from a random magnetization density. Furthermore, the spin spiral state of γ-Fe is correctly reproduced.
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Density functional theory (DFT) [1] has had a tremen-
dous impact on solid-state physics and is, due to its
computational efficiency, at the heart of modern computer
based material research. Since its original proposal, further
developing DFT has been an ongoing process. Extensions
to DFT typically include extra densities in addition to the
charge density, such as the magnetization [2], current
density [3], or the superconducting order parameter [4].
Another fundamental extension of DFT was the generali-
zation to time-dependent systems [5] enabling accurate
calculations of excited-state properties and strongly driven
systems. While these extensions allowed for a more in-
depth understanding of microscopic properties, not much
progress has been made in applying DFT to effects in solids
occurring on larger, mesoscopic length scales. Such effects
include long-ranged quasiparticles, magnetic domains, or
spatially dependent electric fields. As DFT is a formally
exact theory, the underlying physics for such phenomena is
readily at hand, yet actual calculations remain very difficult.
In a typical calculation a single unit cell is solved with
periodic boundary conditions, and thus effects extending
far beyond the size of a single unit cell are lost. While it is,
in principle, possible to use ever larger supercells, in
practice one quickly reaches the limit of computational
viability. This is mostly due to the poor scaling with the
number of atoms, ∼OðN3

atomÞ, which plagues all computer
programs with a systematic basis set and limits calculations
to systems containing a maximum of ∼1000 atoms. Recent
progress based on linear scaling approaches [6] was able to
increase the computable system size considerably. Linear

scaling approaches, however, require a “nearsightedness”
of the system. While this might be fulfilled for effects
strictly related to the charge density, this is certainly not
fulfilled for large magnetic systems, such as magnetic
domains.
In this Letter we propose a fundamentally different

approach to drastically extend the length scale of DFT
calculations without significantly increasing the computa-
tional cost. Our approach relies on altered Bloch states and
can be understood as a generalization of the spin-spiral
ansatz [7], which emerges as a special case of our ansatz. In
the spin-spiral ansatz, a momentum-dependent phase is
added to the normal Bloch state. It then becomes possible to
compute a large, extended spiraling magnetic moment with
a single unit cell. While this is computationally very
efficient, it is, at the same time, the biggest limitation of
the spin-spiral ansatz: It allows only for a change in the
direction of the magnetization while the magnitude of the
magnetization and the charge density remain unaltered. We
overcome this limitation by introducing an additional sum
in the Bloch states over a finer grid in reciprocal space
around each k point. The resulting densities then become a
Fourier series with a controllable periodicity, which may
extend far beyond the length scale of a single unit cell.
The systems we will focus on in this Letter are described

by the Kohn-Sham (KS) Hamiltonian of spin-density
functional theory (atomic units are used throughout):

Ĥ0 ¼ −
∇2

2
þ vsðrÞ þBsðrÞ · σ: ð1Þ
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The KS potential vsðrÞ ¼ vextðrÞ þ vHðrÞ þ vxcðrÞ con-
sists of an external potential vext, a Hartree potential [8] vH
and an exchange-correlation (xc) potential vxc. Similarly,
the KSmagnetic fieldBsðrÞ ¼ ð1=2cÞBextðrÞ þ BxcðrÞ can
be decomposed into an external field Bext and an xc field
Bxc. We will start off by extending the KS wave functions.
From that we will derive altered charge and magnetization
densities. Finally, we will derive a long-range Hamiltonian
and the matrix elements associated with it.
Bloch states of the form φnkðrÞ ¼ unkðrÞeik·r, where unk

is a lattice-periodic spinor function, are used in standard
solid-state calculations. The central idea of our approach is
a generalization of this Bloch state to include long-range
modulations. Our ultra-long-range ansatz employs, in
addition to a momentum-dependent phase [7], momen-
tum-dependent expansion coefficients which allow for
changes in magnitude and direction of the spin and charge
densities from cell to cell. For a fixed k vector our new
Bloch-like state reads

Φk
α ðrÞ ¼

1ffiffiffiffiffiffi
Nu

p
X
nκ

cαnkþκ

 
u↑nkðrÞ
u↓nkðrÞ

!
eiðkþκÞ·r; ð2Þ

where u↑↓nk are the normalized orbitals of a lattice-periodic
system, n is a band index, and k a reciprocal space vector,
cαnkþκ are complex coefficients to be determined variation-
ally and α labels a particular long-range state. The vectors κ
live on a finer grid around each k point in reciprocal space
[Fig. 1(a)], which we use to sample long-range effects.
Finally, Nu is a normalization factor that is equal to the
number of unit cells on which Φk

α is periodic. Note that we
have used the lattice periodic parts of the orbitals at k and
not kþ κ. In principle, both are complete basis sets capable
of expanding any lattice-periodic function. In practice, the
choice of using u↑↓nk over u↑↓nkþκ is more efficient for
determining the density, magnetization, and Hamiltonian
matrix elements.
From this wave function, we can construct a charge and

magnetization density

ρðrÞ ¼ 1

Nk

X
k;α

fkαΦ
k†
α ðrÞΦk

α ðrÞ; ð3Þ

mðrÞ ¼ 1

Nk

X
k;α

fkαΦ
k†
α ðrÞσΦk

α ðrÞ; ð4Þ

with the number of k points Nk and the ultra-long-range
occupation numbers fkα associated with the orbitals Φk

α .
The charge and magnetization density obtained from this
wave function take the form ρðrÞ ¼PQ ρQðrÞeiQ·r and
mðrÞ ¼PQmQðrÞeiQ·r, with Q ¼ κ − κ0. These partial
densities ρQ and mQ are complex in general and act as
lattice-periodic Fourier coefficients. The resulting real-
space densities ρðrÞ and mðrÞ are real functions, which,

depending on the values ofQ, will have a periodicity larger
than the length scale of a unit cell [Fig. 1(b)]. By adjusting
the underlying κ lattice, it is therefore possible to change
the Q vectors and hence allow for variations of arbitrary
length in the system. The Q ¼ 0 term deserves special
mention, as it corresponds to the full lattice-periodic
solution. We emphasize that there is no restriction on
the magnitude of ρQ;mQ and we are thus able to expand
arbitrary modulations in the charge and magnetization
densities. This is a key difference compared to the spin-
spiral ansatz [7] or any down-folding technique.
The Fourier coefficients ρQ and mQ can be calculated

efficiently by first calculating the wave function in Eq. (2)
for a subset of unit cells given by a set of real-space lattice
vectors fRig. We choose theRi vectors to be the conjugate
real-space vectors of the Q vectors. The wave function in a
single unit cell is then given by a sum over n and a fast
Fourier transform in κ of the coefficients cαnkþκ:

Φk
α ðrþRiÞ ≈ eik·ðrþRiÞ

X
n

 
u↑nkðrÞ
u↓nkðrÞ

!X
κ

cαnkþκe
iκ·Ri ; ð5Þ

where r is restricted to a single unit cell and we have
assumed that jκ · rj ≪ 1. Note also that the normalization
constant 1=

ffiffiffiffiffiffi
Nu

p
has been removed. This ensures that

observables such as charge and energy are calculated per
unit cell rather than per ultracell. From this, we compute the
charge and magnetization densities on the same grid, i.e.,

(a) (b)

FIG. 1. (a) Schematic of the κ-point grid. For each k point
(black dashed line) all bands (blue) are augmented with a fine grid
of κ points (green). Three different types of couplings between κ
points corresponding to different length scales are possible. (i) A
coupling between two identical κ points but with different band
indices (ii) a coupling between different κ points sharing the same
band index, and (iii) a coupling between different κ points with
different band indices. The maximum length scale of the
calculation may be chosen by adjusting the κ-point grid. (b) A
schematic of the long-range approach. The red lines indicate unit
cells. The lattice periodic density ρQ (blue) is altered by a
Q-dependent modulation (orange) with a different periodicity.
The result (lower graph) depends on both, the long-range
modulation and the lattice periodic solution. a is the lattice
constant of a unit cell and A is the lattice constant of the ultracell,
which is the smallest cell that contains the full long-range
solution.
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ρi ¼ ρðrþRiÞ and mi ¼ mðrþRiÞ. This set can then be
partially (fast) Fourier transformed to reciprocal space to
obtain ρQðrÞ and mQðrÞ:

ρQðrÞ ¼
1

NR

X
i

ρðrþRiÞe−iQ·Ri ;

mQðrÞ ¼
1

NR

X
i

mðrþRiÞe−iQ·Ri : ð6Þ

Here NR denotes the number ofR vectors chosen. With the
densities at hand, we will now focus on generalizing the
Hamiltonian such that meaningful, nontrivial values for the
expansion coefficients cαnkþκ in Eq. (2) are obtained. The
ultra-long-range Hamiltonian retains the full lattice peri-
odic KS Hamiltonian Ĥ0 given in Eq. (1), but also has an
additional “modulation” term

Ĥ ¼ Ĥ0 þ
X
Q

ĤQðrÞeiQ·r: ð7Þ

The total Hamiltonian Ĥ is thus decomposed in the same
way as the charge and magnetization densities For a KS
system like Eq. (1), our modulation Hamiltonian reads

ĤQðrÞ ¼ VQðrÞ þBQðrÞ · σ; ð8Þ

where VQðrÞ and BQðrÞ are again complex, lattice periodic
Fourier coefficients and contribute to long-ranged versions
of the scalar potential and the magnetic field, respectively.
In the following we will discuss these coefficients and how
to compute them in more detail. Wewill start with the scalar
potential, which can be decomposed into an external
potential Vext

Q ðrÞ, a Hartree potential VH
QðrÞ, and an xc

potential Vxc
Q ðrÞ. Vext

Q ðrÞ of an external, long-ranged poten-
tial can be freely chosen. The coefficients for the long-
ranged Hartree potential VH

QðrÞ are obtained from the long-
range density

VH
QðrÞ ¼

Z
d3r0

ρQðr0Þ
jr − r0j e

−iQ·ðr−r0Þ: ð9Þ

This integral may be performed efficiently by further
Fourier transforming ρQðrÞ to ρQðGÞ, where G is a
reciprocal lattice vector. The Hartree potential is then
determined directly via VH

QðGÞ ¼ 4πρQðGÞ=jGþQj2
and can be subsequently Fourier transformed back to real
space. This is easily extended to the case of the augmented
plane wave basis by using the method of Weinert [8].
Next we will determine the coefficients associated with

the xc term. An important difference compared to the
Hartree potential is that the xc potential is inherently a
nonlinear functional of the densities, therefore the naive
approach Vxc

Q ¼ Vxc½ρQ�may introduce a mixing of the real
and imaginary part of ρQ. Instead, we first Fourier trans-
form the density to real space, ρRi

ðrÞ, and then evaluate the

xc potential separately for each R vector. The inverse
Fourier transform is then applied to obtain

Vxc
Q ðrÞ ¼

1

NR

X
j

Vxc½ρRj
�ðrÞe−iQ·Rj : ð10Þ

We note that if the number ofQ orR vectors is less than the
number of unit cells a small error due to the effective
interpolation between unit cells is incurred.
The coefficients of the magnetic field BQ in Eq. (8)

consists of an external field, an xc field, and a dipole-dipole
field: BQðrÞ ¼ ð1=2cÞBext

Q ðrÞ þ Bxc
Q ðrÞ þ ð1=2cÞBD

QðrÞ.
Again, the external magnetic field may be chosen arbitrar-
ily and the xc field can be computed analogously to the xc
potential

Bxc
Q ðrÞ ¼

1

NR

X
i

Bxc½ρRi
;mRi

�ðrÞe−iQ·Ri : ð11Þ

The last term of BQðrÞ corresponds to the magnetic field
associated with the magnetostatic dipole-dipole interaction

BD
QðrÞ¼

1

2c

Z
d3r0

3er−r0 ðmQðr0Þ ·er−r0 Þ−mQðr0Þ
jr−r0j3 e−iQ·ðr−r0Þ;

ð12Þ

where er−r0 is the unit vector along the direction r − r0. The
contribution of the dipole-dipole interaction is typically
neglected in DFT calculations as it is usually small in
comparison with Bxc, which originates from the Coulomb
exchange interaction. However, as the Coulomb exchange
interaction is inherently short ranged, the magnetic dipole-
dipole interaction is expected to have a significant
contribution at larger length scales. We therefore include
this term in the modulation Hamiltonian. The derivation of
a truly nonlocal, Q-dependent xc potential is beyond the
scope of this Letter but has been addressed by Pellegrini
et al. [9] for the dipole interaction.
We have implemented the ultra-long-range approach in

the Elk electronic structure code [10], which is an all
electron code using full-potential linearized augmented
plane wave (FPLAPW) method. Details of the numerical
implementation, such as parameters for the k point and
Q-point grids chosen for the calculations, are given in the
Supplemental Material [11]. The scaling of the method is
linear in the number of k points and cubic in κ points. To
test our method, we performed two calculations for which
the ultracell is small enough to be amenable to supercell
calculations so that a detailed comparison is possible.
Finally, we demonstrate the efficiency of our method with
a calculation which would be considered too large to be
treated as a supercell.
(a) Spin spirals in γ-Fe.—The first numerical test deals

with the so-called γ phase of Fe. Previous calculations [12]
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have shown that the spin-spiral state has the lowest energy
compared to several commensurate ferromagnetic and anti-
ferromagnetic structures. The ultra-long-range method allows
us to address the question whether the much larger variational
freedom associated with the ultracell still yields the spin spiral
as ground state. We perform both the traditional spin spiral as
well as the ultracell calculations for γ-Fe. Spin-orbit coupling
cannot be used consistently with the spin-spiral ansatz but
there is no such restriction with the long-range method.
However, for the sake of comparison, spin-orbit coupling
was not included in the ultracell calculations.
An initial magnetic field is required to break the spin

symmetry. To ensure an unbiased calculation, we applied a
random field to the ultracell calculation and subsequently
reduced it to zero. Nevertheless, the magnetization converged
to an ordered state where the magnitudewas constant over the
ultracell and only the direction varied [Fig. 2(a)]. This
corresponds precisely to the lattice parameter and undergoes
a transition from ∼1μB to ∼2.5μB for this relatively small Q
vector. As may be seen in Fig. 2(b), this behavior is observed
for both the ultracell and spin-spiral calculations.
(b) Spin density wave in bcc Cr.—In a second test, we

aim at calculating the coupled charge and spin density wave
(SDW) state in Cr. The existence of a SDW in Cr is well
known and first research dates back to around 1960
[13–15]. Despite this, computing the SDW state within
DFT remains difficult and has been the topic of many
studies [16–28], with partially conflicting results [29]. It is
likely that a SDW is not the true ground state of Cr within
DFT [30], however, we will not focus here on the inherent
complexities of the system. This state is not achievable by
the spin-spiral ansatz because the magnitude of the moment
changes but not its direction, thus a supercell calculation is
required. Cr is an excellent test scenario, as the periodicity
of the SDW is ∼20.83 unit cells, which is still well within
computational reach of the supercell approach.
For our comparison, we use the LSDA and a lattice

parameter of 2.905 Å as suggested by Cottenier et al. [29].
Spin-orbit coupling was included for both supercell and
ultracell calculations. Our results are shown in Fig. 3.

Specifically, Fig. 3(a) shows the comparison of the mag-
netization in the SDW state, as obtained from the supercell
and ultracell calculations. In Fig. 3(b) we present the charge
density wave (CDW) which is known to stabilize alongside
the SDW with twice the period. While obtaining the CDW
in the ultracell is straightforward [as all ρQðrÞ are known],
it is numerically more challenging to extract it for the
supercell. We did this by subtracting the density from the
calculation of a single unit cell. We obtain the same
periodicity in both calculations as well as a comparable
magnitude.
(c) Long-range electrostatic potential in LiF.—The

previous two examples involved modulations in long-range
magnetic order, now we test the method with long-range,
external electrostatic fields. This is in anticipation of a
future development where ultra-long-range TDDFT calcu-
lations are performed in conjunction with Maxwell’s
equations. To demonstrate the power of our new method,
we perform a calculation which is too large for a supercell.
Rather than attempting to model a physical phenomenon at
this stage, we simply apply an arbitrarily chosen electro-
static potential to an insulator, in this case LiF.
The resultant change in density away from unit cell

periodicity is plotted in Fig. 4. As the potential is artificial,
the important metric here is the computational effort
expended in reaching the self-consistent solution. The rate
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FIG. 2. (a) Ultra-long-range magnetization density of γ-Fe
plotted in the plane perpendicular to ½001�. The color indicates
the magnitude of the magnetization and the arrows indicate the
direction. The modulation encompasses 32 unit cells in the ½100�
direction. (b) Plot of moment against unit cell volume for both the
long-range and spin-spiral ansatz.
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FIG. 3. (a) Magnetization density for bcc Cr over 21 unit cells.
(b) Change in density over the same range. For the ultracell, this
was generated by setting ρQ¼0ðrÞ in Eq. (6) to zero. For the
supercell, the lattice-periodic density was subtracted leaving just
the modulated density.

FIG. 4. Self-consistent density without the ρQ¼0ðrÞ term for a
3456 atom ultracell of LiF with an artificial external potential.
The plotting plane is perpendicular to ½001� and contains 48 × 36
unit cells.
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of convergence is fairly slow because of the effect of the
long-range Coulomb interaction, and thus we performed
170 iterations of the self-consistent loop. The calculation
was performed on 480 CPU cores and each iteration took
about 40 min. This level of performance for an all-electron
calculation indicates that physical phenomena involving
modulations of the electronic state over hundreds or
thousands of unit cells are within reach of this approach.
To estimate the accuracy of the method another example of
a given external potential, a sawtooth potential applied to
Si, with periodicity small enough to allow comparison
with a supercell calculation is given in the Supplemental
Material [11]. In both these examples, nuclear degrees
of freedom are neglected. However, it would be straightf-
orward to include the effect of atomic displacements in
the ultracell via the gradient of the nuclear Coulomb
potential.
To summarize, we have developed a method which

makes possible the ab initio treatment of hitherto uncom-
putable length scales in solids. This consists of a modified
Bloch ansatz and a set of Kohn-Sham equations which
have to be solved self-consistently. The underlying lattice
of nuclear charges is still periodic on the unit cell length
scale but the electronic state can accommodate arbitrary
modulations on any length scale. Based on our experience
with the all-electron Elk code, we are confident that this
method can be efficiently implemented in most existing
solid-state electronic structure codes. We demonstrated
the capabilities of the novel method by solving an
arbitrary external potential applied to nearly 3500 atoms
of LiF. Additionally, we showed that our method can
reproduce the results obtained by supercell calculations on
smaller length scales for two examples of magnetic solids.
We do expect the method to become inefficient in cases
where both the ultracell is large and a high resolution of
density modulations is required, for example, magnetic
domains where the length scale of the domain walls is
much smaller than the size of the domains themselves.
The method presented in this Letter opens up exciting
possibilities of future research: it paves the way to
calculations of mesoscopic systems, such as magnetic
domain walls or skyrmions, which have so far been out of
reach for ab initio methods like DFT. Furthermore, the
novel technique is straightforwardly incorporated in real-
time TDDFT calculations which, when combined with the
solution of Maxwell’s equations, will give access to the
propagation of electromagnetic radiation through
extended solids and to the dynamics of mesoscopic
structures such as plasmonic microantennas within a
genuine ab initio description.
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