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The Pauli exclusion principle is a fundamental law underpinning the structure of matter. Because of their
antisymmetric wave function, no two fermions can occupy the same quantum state. Here, we report on the
direct observation of the Pauli principle in a continuous system of up to six particles in the ground state of a
two-dimensional harmonic oscillator. To this end, we sample the full many-body wave function by
applying a single atom resolved imaging scheme in momentum space. We find so-called Pauli crystals as a
manifestation of higher order correlations. In contrast to true crystalline phases, these unique high-order
density correlations emerge even without any interactions present. Our work lays the foundation for future
studies of correlations in strongly interacting systems of many fermions.
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Correlated fermions lie at the heart of many open
questions concerning quantum matter that remain
unresolved to this day. Knowledge of the type and origin
of correlations, especially of higher orders, is an essential
cornerstone in the endeavor of solving these complex
many-body systems [1–3]. Strong correlations are,
however, not exclusive to interacting particles as was
demonstrated already in 1956 by the famous experiment
of Hanbury Brown and Twiss [4]. Bosons tend to occupy
the same quantum state while multiple occupation of a
single state is forbidden for fermions due to the Pauli
exclusion principle.
In a degenerate gas of neutral fermions, Pauli exclusion

reveals itself through suppression of collisions [5,6] and an
effective Fermi pressure [7]. Antibunching has been
observed directly in time-of-flight measurements [8,9] or
via the suppression of density fluctuations [10,11].
Quantum gas microscopy advances have led to the first
single atom resolved observation of Pauli blocking in the
band insulating regime of a lattice potential [12].
Here, we extend single atom resolved measurements of

fermionic correlations to continuous systems. We study
ultracold, fermionic atoms that are confined to a two-
dimensional harmonic oscillator potential. Even in the
absence of interactions, the Pauli exclusion leads to local
high-order density correlations between the atoms that go
beyond a simple Fermi hole. The geometric patterns that we
observe are clearly distinct from those in interaction driven
systems and they have been termed Pauli crystals [13].
Pauli crystals only emerge at very low temperatures where

the particles become quantum degenerate and their Fermi
energy dominates over temperature and trap imperfections.
This requires charge-neutral noninteracting systems and
control on very low absolute energy scales [14]. The
structures act as a starting point for the study of correlations
in continuous systems with single atom resolution.

The experimental observation of Pauli crystals relies on
two essential capabilities: the preparation of N noninter-
acting fermions in a well-defined quantum state and the
detection of N-body correlations in the relative positions or
momenta of these particles. We perform our experiments
with a balanced mixture of two hyperfine states of 6Li
confined by the superposition of an optical tweezer and a
single site of a one-dimensional optical lattice in the vertical
direction [see Fig. 1(a)]. The large ratio between axial
[ωz ¼ 2π× 6560ð6Þ Hz] and radial [ωr ¼ 2π × 983ð5Þ Hz]
trap frequencies allows us to work in a quasi-2D regime
for sufficiently small temperature T and particle number N.
In this limit all the atoms occupy the motional ground state
in the axial direction and the dynamics are limited to the
harmonic confinement in the radial direction.
The nth energy level of a symmetric two-dimensional

harmonic oscillator is (nþ 1)-fold degenerate, leading to
three lowest closed-shell configurations filled with 1, 3,
and 6 fermions per spin state respectively [see Fig. 1(a)].
A spilling technique that was initially pioneered for one-
dimensional systems [15] and that we extended to two
dimensions [16] allows us to reach these configurations
filled with two spin components. The preparation fidelities
are 92(7)% for the 3þ 3 (N↑ þ N↓) and 56(3)% for the
6þ 6 ground states, respectively. We work with a two
component mixture instead of a single component gas since
attractive interactions during the spilling sequence improve
the preparation fidelity. To create a noninteracting mixture,
we make use of a Feshbach resonance [17] and adiabati-
cally ramp the magnetic offset field B to a zero crossing of
the scattering length a3D at 568 G once the system is
initialized in the ground state. For all the measurements
presented in the following, the atoms of only one of the two
spin components are imaged.
We extract momentum correlations from our system by

first mapping the initial momenta of the particles onto their
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position by a TOF expansion for a quarter trap period in a
single lattice site with ωTOF ¼ 2π × 20.7ð5Þ Hz [18]. This
is followed by the single atom detection fluorescence
imaging scheme discussed in detail in Ref. [19]. By
collecting on average 20 photons per atom on a single
photon counting camera, this method allows us to detect
atoms of a single spin component in free space with
fidelities on the order of 95% [see Fig. 1(b)]. Each image
obtained in this way represents a single sample pi;x and pi;y
of the in situ momentum distribution for every particle
i ¼ 1…N of one of the spin components [see Fig. 1(c)].
The harmonic confinement plays an important role for

our measurements. We prepare our atoms in eigenstates of
the harmonic oscillator. The real space wave functions are
therefore given by Slater determinants that contain super-
positions of Hermite polynomials [20]. These wave
functions are invariant under continuous Fourier transforms
and therefore also invariant under our TOF expansion.
The expansion simply corresponds to a magnification of the
in-situ wave function by a factor of 50. This leads to an
effective imaging resolution of approximately 200 nm. The
natural scale of the harmonic oscillator states is given by
p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

ℏmωr
p

or l0 ¼ ℏ=p0 ¼ 1.31ð1Þ μm.

Our measurements have been performed by preparing
the system at the lowest accessible temperatures with two
(N ¼ 3) or three (N ¼ 6) harmonic oscillator shells filled
and collecting 9994 and 19291 TOF images, respectively.
Only images where the correct number of atoms have been
detected are investigated further, leading to postselection
rates of 25% and 28%. We process these measurements as
suggested by Ref. [13] to reveal correlations between the
fermionic particles [see Fig. 1(c)]. In the first step, we
subtract the respective center of mass momentum p̄ from
each set of momenta pi. We find that the width of the center
of mass momentum scales with the inverse square root of
the total mass (i.e., mtot ¼ Nm, where m is the mass of one
6Li atom) as expected [20].
A histogram of the remaining relative momenta yields

the one-particle momentum distribution [see Fig. 2(a)]. The
latter expresses the probability to find one particle with
momentum px − p̄x and py − p̄y when integrating over all
possible momenta of all other particles. We stress that the
one-particle momentum density can also be obtained from
average density images without single particle resolution
and does not reveal any higher order correlations. Our data,
however, contain more information: we know the full
configuration of all particles in every single realization
of the experiment.
To extract correlations, a second processing step is

necessary. Because of the radial symmetry of our system,
the angle distribution of all particles NðϕÞ is homogeneous
(see Fig. 3). The rotational symmetry is only broken in each
experimental realization by the measurement itself and the
particles align with respect to a random axis that is different
for each set of momenta pi. We rotate each set independ-
ently to a new coordinate system p̃i by an angle that
minimizes the distance to a chosen target configuration
[13,20]. Strong correlations in both the N ¼ 3 and the
N ¼ 6 particle state become apparent immediately in the N
particle momentum configuration distributions that we
obtain in this way [see Figs. 2(b,c)].
The observation of these so-called Pauli crystals

confirms theoretical predictions [13]. To rule out an artifact
of our analysis, we compared to images that were obtained
after shuffling the atom momenta between different exper-
imental runs [20]. This is especially important since it has
been shown that other distance measures can cause a bias
towards the target configuration [21]. In addition, we
calculate the angular density-density correlation function
C2ð0;ϕÞ that expresses the probability of finding a second
particle at an angle ϕ2 ¼ ϕ, when one particle is fixed at
ϕ1 ¼ 0. The result for N ¼ 6 is shown in Fig. 3 and clearly
shows the presence of four peaks, as expected for the
Pauli crystal and in agreement with a Monte Carlo
simulation [20].
We find that the observed configuration distributions

exhibit weaker modulation than the simulations we perform
for systems at zero temperature. We quantify this effect
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FIG. 1. Sketch of the experimental setup. The atoms are trapped
in a single site of an attractive one-dimensional optical lattice in
the vertical direction superimposed with a tightly focused optical
tweezer [(a), top]. The degeneracy of the effectively two-dimen-
sional harmonic confinement leads to the formation of a non-
trivial shell structure [(a), bottom]. Binarized image of the N ¼ 6
closed-shell system taken with a single photon-counting EMCCD
camera after a time-of-flight expansion (b). We extract the atom
momenta by searching for local maxima in the low-pass-filtered
image (c). All momenta are plotted in natural units of the
harmonic oscillator confinement. To reveal correlations between
the particles we subtract the center of mass motion [(c), arrow 1]
and rotate to a common symmetry axis [(c), arrow 2].
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through the contrastCðpÞ, which we define as one minus the
ratio of the minima and maxima of a fit to the configuration
distribution at a fixed radial momentump ¼ 2p0 [see Figs. 4
(a,d)]. Apart from technical limitations like the point spread
function of our imaging setup or fluctuations of trap
potentials, we identify the finite temperature of our initial
state as the main cause of this reduction.

To study the effect of finite temperature in more detail,
we “melt” the N ¼ 6 crystal by increasing the mean energy
of the initial state [see Figs. 4(a)–4(c)]. To this end, we
modulate the confining potential at twice the trap frequency
2ωr with variable amplitudes and take around 3000 images
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FIG. 2. Pauli crystal measurements with N ¼ 3 and N ¼ 6 particles. A 2D histogram of the measured momenta pi minus the center of
mass momentum p̄ leads to the one-particle relative momentum distribution of theN ¼ 3 system (a). The reduced density in the center is
a result of the exact form of the harmonic oscillator eigenfunctions and not a consequence of antisymmetrization. The inset shows a
measurement of the momentum point spread function of our imaging setup plotted on the same scale. The strong correlations between
the fermions only reveal themselves in the configuration probability densities for N ¼ 3 (b) and N ¼ 6 (c), where each experimental run
has been rotated separately to a common symmetry axis.
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FIG. 3. Angle correlations for N ¼ 6 particles. The angular
correlation function C2 is computed after removing the center of
mass motion by fixing one particle at ϕ1 ¼ 0 and creating a
histogram of the measured angles of the other particles. C2ð0;ϕÞ
shows 4 maxima in addition to the hole around ϕ ¼ 0 as expected
for the fivefold symmetry of the Pauli crystal (blue points). The
measurement agrees well with a Monte Carlo simulation (dashed
line). Both the total angular atom distribution NðϕÞ (yellow
points) and the correlation function of shuffled data (gray points)
show no structure.
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FIG. 4. Melting the Pauli crystal. (a)–(c) N ¼ 6 Momentum
configuration distributions for different initial state energies. We
find that the Pauli crystal melts quickly when we add energy to
the initial state by modulating the trap potential. (d) We extract
the contrast C by fitting a sine function to the distribution at a
fixed momentum p ¼ 2p0 [highlighted by the yellow line in (a)].
(e) The contrast reduces with increasing total mean energy of the
system. (f) We compare our measurement to a Monte Carlo
simulation, where we sample states from a thermal N-body
density matrix. We follow the simulation procedure discussed in
Ref. [14] and include only states up to a maximal excitation
energy of 6ℏωr to reduce the computational cost. The dashed
lines are linear fits to the data.
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at each setting. Trap imperfections like anharmonicity and
anisotropy in combination with small potential drifts cause
the system to dephase on timescales much faster than the
modulation time of t ¼ 50 ms and the excitation is there-
fore not coherent.
The total energy of the system is extracted from the

momentum measurements and averaged over each data set.
We find that the energy of the lowest temperature initial
state, without any applied modulation, is E ¼ 13.1ℏωr.
This value is about 5% below the expected N ¼ 6 ground
state energy of Eg ¼ 14ℏωr. Our measurement of the
energy entails systematic uncertainties like the error on
the frequency measurement of the expansion potentialωTOF
(≈2%) or the magnification of our imaging setup that both
enter quadratically. Taken together, these uncertainties may
account for the observed shift to lower energies, which is
systematic for all data points.
A comparison of the relative change in energy and

contrast clearly displays the effect of the modulation [see
Fig. 4(e)]. We find that the contrast reduces with increasing
mean energy. A linear fit to the contrast leads to a slope of
dC=dEexp : ¼ −0.075ð13Þ=ℏωr. We compare this value to
the slope of −0.048ð3Þ=ℏωr that we extract from a simu-
lation using thermal states as described in Ref. [14] [see
Fig. 4(f)]. While our finite, noninteracting system is not
expected to thermalize after the modulation, the number of
excited states that might contribute to the density matrix at a
given excitation energy is very large. The dimension of the
Hilbert space of excitations from the N ¼ 6 particle ground
state to the next few higher shells is already on the order of a
few hundred thousands. Trap imperfections like anharmo-
nicity and anisotropy lead to coupling between the different
degrees of freedom. Together with small potential drifts this
motivates our comparison of the measured final state to a
thermal mixture. In addition to deviations from a thermal
state, the discrepancies we find may be due to the systematic
uncertainties in determining the total kinetic energy or due to
additional excitations in the axial direction. The thermal-
ization dynamics that may occur in the presence of inter-
actions are an exciting topic for future studies.
In conclusion, we find that the finite temperature of our

experiments is one factor that contributes to the reduced
contrast of the measured Pauli crystals. The ability to melt
the Pauli crystal clearly shows that the observed correla-
tions originate from the fermionic nature of our initial state.
Neither fidelity nor resolution of our imaging technique
depend on the initial state energy.
We have observed that Pauli’s principle leads to the

formation of striking geometric configurations of fermions
confined in a trap, even in the absence of any interactions.
The structure is not apparent in the density distribution
directly but only reveals itself in correlations between
relative positions or momenta. Each single experimental
realization still fluctuates and can deviate significantly from
the most probable configuration.

Many interacting mesoscopic systems, like ions [22],
Rydberg atoms [23] or dipolar gases [24] show self-ordering
and crystalline structures akin to what is observed here.
While this motivates the term Pauli crystal, we stress that in
our case translational symmetry is not broken and no long-
range order is present. The ground state is a coherent
superposition of all possible configurations and the rotational
symmetry is only broken through the actual measurement.
We generically expect this kind of order driven by

quantum statistics to be present in few-fermion systems
of fixed particle number. Our simulations show that similar
structures appear, for example, also in box potentials.
While the exact trapping potential is not important, the
order will be pronounced as long as the interparticle
spacing is not much smaller than the size of the system.
As the system size is increased, we expect the structures to
decrease in contrast until they vanish for a homogeneous,
infinite Fermi gas.
Our measurements demonstrate that the correlation

environment of individual particles can now be accessed
in continuum systems. This unique capability will be
extremely useful for future studies of correlations in
strongly interacting systems. Our single atom imaging
scheme can be made sensitive to a second spin state
[19], which may directly reveal pairing correlations near
the few-body precursor of a phase transition that we have
recently observed [16]. Scaling up the system size will
enable us to shed further light on many open questions
concerning two-dimensional Fermi gases like the nature of
its normal phase [25] or to study the emergence of Cooper
pairing [1]. The detection of momentum correlations
represents one milestone on the path towards understanding
many of these complex fermionic many-body systems.
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