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Much evidence seems to suggest the cortex operates near a critical point, yet a single set of exponents
defining its universality class has not been found. In fact, when critical exponents are estimated from data,

they widely differ across species, individuals of the same species, and even over time, or depending on
stimulus. Interestingly, these exponents still approximately hold to a dynamical scaling relation. Here we
show that the theory of quasicriticality, an organizing principle for brain dynamics, can account for this

paradoxical situation. As external stimuli drive the cortex, quasicriticality predicts a departure from
criticality along a Widom line with exponents that decrease in absolute value, while still holding
approximately to a dynamical scaling relation. We use simulations and experimental data to confirm these
predictions and describe new ones that could be tested soon.
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Introduction.—A cubic millimeter of cortex is showered
with approximately 10° synaptic inputs every second, even
during sleep. The rate at which these synaptic currents arrive
changes constantly, depending on cognitive state. This
situation drastically constrains any statistical analysis of
living cortical networks. While equilibrium approaches
might serve as approximations, nonequilibrium methods
are required to accurately describe its dynamics [1]. Yet
even the nonequilibrium framework of self-organized criti-
cality [2,3], often invoked in these studies [4,5], requires
separation of timescales between a single incoming stimulus
and the relaxation of the consequent avalanche. Such
separation is not realistic in actual networks [6—8].

What is needed is an organizing principle for cortex
dynamics that describes how these networks can appear to
show some signatures of criticality despite receiving
constantly changing external drive [9]. Work in Ref. [10]
recorded from turtle visual cortex while movies with
changing images were delivered to the retina; work in
Ref. [11] recorded from freely moving and resting rats with
changing levels of activity. In both studies, neuronal
avalanches produced seemingly power law distributions
with exponents that approximately followed a scaling
relation [12,13], indicating closeness to criticality.

But what is perhaps most intriguing is that the exponents
did not reveal a single universality class. Rather, the
exponents could change across individuals, and even across
time within an individual, all while approximately holding
to a dynamical scaling relation. The data would seem to be
at odds with the longstanding concept of a universality
class [14].

Here, we address this apparent paradox with the prin-
ciple of quasicriticality [7], which hypothesized that a
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healthy cortex always adapts to operate near a line of
maximal dynamical susceptibility, and will be critical only
in the limit of no external drive (stimulus, noise, or
dissipation). It predicts that for nonzero drive, quantities
like the dynamical susceptibility and information trans-
mission will no longer display singularities. As drive
increases, moving away from the critical point, the height
of these peaks will decrease. Moving in parameter space
along the (Widom) line of these maximal, but decreasing
peaks, the avalanche (effective) exponents for size and
duration as well as the branching ratio will decrease in
testable ways (Fig. 3). The quasicritical region is defined by
the domain in parameter space surrounding the Widom line
[7]. As the cortex moves along the Widom line of
optimality, it also will remain close to the critical point,
so adherence to a scaling relation is expected. Using these
predictions, we will show that quasicriticality can account
for the pattern of data seen in recent experiments [11]
without resorting to multiple universality classes. In addi-
tion, we show that our own experimental data fulfill
quasicriticality’s specific predictions (Fig. 3).

Critical vs quasicritical vs noncritical —It is important to
highlight physical distinctions between the various hypoth-
eses. Inneural activity data taken from cortical tissue, critical
behavior can, in principle, be identified by examining
dynamical scaling relations [14]. Power-law scaling per-
meates complex systems and a plethora of physical mech-
anisms generate scaling. In brain dynamics we argued [7]
that the relevant nonequilibrium scaling is associated to the
well-known absorbing-state phase transitions, the most
important class of which is directed percolation [15]. The
finite-size scaling assumption for probability distributions
of avalanches at criticality, P(q,L) =g ¥,(q/L%),
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FIG. 1. Exponent relations and dynamical scaling line, of slope
v, for the various physical hypotheses (see text).

establishes relations between the critical exponents 7, and
fractional dimension d, for quantities ¢ (e.g., avalanche size
S and duration T) given a system of linear size L, where W is
the scaling function [14]. Assuming avalanches’ size and
duration satisfy scaling, then the conditional probability
P(S|T) o &(S — T7). This, in turn, leads to the conditional

expectation value (S) o« T7 with a resulting scaling relation
y = (77 — 1)/(zs — 1), where exponents 77 and 7 are from
avalanche duration and size distributions, respectively [15].
A pair (zg,77) defines a universality class [16] [see
Fig. 1(a)]. The criticality hypothesis of brain dynamics
argues for such fine-tuning behavior. Moreover, from
scaling one obtains bounds on critical exponents. For
instance, the average avalanche size (S) « L with
os = dg(2 — 75) if g < 2, meaning that (S) diverges with
system size, while o5 = 0 if 75 > 2.

Figure 1(b) depicts multiple universality classes; there
are several pairs of exponents, each dot fixed on the line
[17]. If the data were not critical, pairs of exponents might
be observed, but they would not generally adhere to the
scaling relation [Fig. 1(c)]. However, quasicriticality [Fig. 1
(d)] predicts multiple pairs of exponents could be observed,
all adhering to the scaling relation, and possibly moving
along the line over time. Therefore, even though a system
ideally belongs to a given universality class (zg, 77) [16],
the measured effective exponents 7, may vary as a function
of the stimulus or noise. A natural question is, how do these
effective exponents change as a result and how far from the
dynamical scaling line do they lie? This is a subject we
explore next.

Cortical branching model (CBM).—To address the
question above we start analyzing the CBM [7]. This is a
nonequilibrium stochastic cellular automaton that captures
main features of neural network data. Since we are interested
in robust generic phenomena we need a flexible platform
such as the CBM to answer that question. Certainly, the
topology of the network dictates universality and the nature
of the phases involved in its phase diagram. For our
purposes, we focus on the case of strongly connected

[18]. In that case, we uncovered a rich phase diagram
including a normal region with subcritical and supercritical
phases separated by a critical (or crossover) region, and a
quasiperiodic (chaotic) phase. Critical exponents were ana-
lytically determined using mean-field approximations and
found to coincide with (mean-field) directed percolation
universality class. Determining the universality class of the
CBM in a strongly connected graph is an interesting question
beyond the scope of this work [19]. For more details we refer

the reader to the original work [7].
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FIG. 2. Logarithmically binned avalanche size, and duration,
probability distributions [22] for (a) CBM simulation with
p, = 1073, (b) Mouse data 23, (c) Mouse data 18, (d) rat data.
Red circles were selected for fitting.
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FIG. 3. Predictions of quasicriticality. (a) Simulations and data follow the scaling relation as predicted by quasicriticality. As py is

increased (blue arrow) exponents (77,%g) decrease in the model (blue diamonds for p, = 107>, 107, 10~3) while still approximately
holding to the scaling relation (dashed line). Note that susceptibility curves A, B, and C in panel (c) correspond to these p, values.
Increasing 7, (orange arrow) increases the magnitude of the effective exponents (the orange squares correspond to 7, = 5 for p, = 1073
and 107*, respectively). Actual datasets (red circles) also lie near the line, and have reduced values of susceptibility and branching ratio
K, in agreement with the simulations. Our scaling line has a slope of 1.45(4), in agreement with our data and differs from the slope in
Ref. [11] shown in the inset. Note that model parameters can be easily changed to match any slope, but that the trends in susceptibility
and k,, as p, is increased will not change and constitute the specific predictions of the theory tested here. (b) Phase diagram showing how
increased external drive leads to the Widom line; the y axis is the (time-averaged) density of active nodes (order parameter), the x axis is
the branching ratio, k (control parameter). With minimal external drive (p, = 107), the solid black line at A comes near the critical
point. As the external drive is increased (p, = 10™*), the dashed line follows the solid black line, but rises above the critical point, with a
gradual bend in the curve at B. Further increases in the external drive (p, = 107%) cause the curve to rise more, bending near C. The thin
gray line connecting A, B, C is the Widom line. Note that it tilts to the left, predicting that k,, should decrease as p, increases.
(c) Susceptibility is maximal, but not divergent, along this line. Three plots of the susceptibility produced by simulations with different

values of p,. Note that increases in p, cause peak susceptibility to decline, leading to flattened curves.

We analyze the region in parameter space close to the
Widom line, representing the crossover domain where the
dynamical susceptibility associated with the density of
active nodes (order parameter) attains its largest values. We
consider random, strongly connected, networks of L = 128
nodes, with a fixed in-degree of ki, = 3, branching param-
eter k, with an exponential distribution of connection
strengths [18].

In the CBM the magnitude of the input activity to the
network is represented by a probability of spontaneous
activation p,. The refractory period z,, i.e., the number of
time steps following activation during which a node cannot
be made to activate, is a competing timescale in the problem.

As mentioned above, we want to explore the dynamical
response in the domain surrounding the Widom line. To this
end, for given values of p, and z,, we locate the corre-
sponding point along the Widom line by varying « until the
dynamical susceptibility, at x,,, becomes maximal. It is
precisely for this set of parameters that we next determine
the effective exponents (Zg,77) for avalanche size and
duration distributions. Let us start by fixing 7z, = 1 and

vary p, in the range p, € [107°,107%]. The effective
exponents, together with the computed values of «,,, are
shown in Table I. As one can see, as p, increases, the
exponents decrease in magnitude. Increasing the proba-
bility of spontaneous activity p,, increases activity and,
therefore, produces positive interference with avalanches,
increasing their size and duration accordingly. At the same
time, this induces a smaller magnitude of the effective
exponents. Consider next increasing the refractory period
to 7, = 5. As appreciated in Table I, the optimal «x,, is
shifted to larger values. By increasing 7,, one reduces the
number of possible nodes that could become active, which
in turn reduces the size of the avalanches lowering the
probability for the avalanche to continue spreading, and
increases the magnitude of the effective exponents. These
constitute testable predictions of quasicriticality which
could be checked, for instance, by application of drugs
in living tissue resulting in an increase of the average
refractory period.

Several comments are in order. First, although one could
in principle establish a finite-size scaling extrapolation to
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L — oo [18], these effective exponents will never represent
exact critical exponents since the system, when p, # 0, is
not scale invariant. Nonetheless, the effective exponents
move along the dynamical scaling line. The universality
class (zg,77), when p, — 0, is unique [19] but depending
on physical conditions the measured effective exponents
wander along the dynamical scaling line. Second, the
behavior just derived from computation corresponds to
the optimal situation, that is, when the system operates
exactly at the Widom line. On this line, one should obtain
the best numerical agreement between the slope y derived
from the effective exponents and the one obtained from the

conditional expectation value (S). Finally, as long as the
system is close to the Widom line, that is, the quasicritical
region [7], one will arrive at the same conclusions. But what
happens if the system operates very far from the optimal
region, such as in the deep subcritical region [18]?

Signs of quasicriticality in experimental data.—Before
testing the quasicriticality hypothesis with empirical data,
we need to make careful assumptions and apply strict
criteria [18]. First, because living neural networks are open
nonequilibrium systems, their state will fluctuate in two
ways: (i) due to the inherent noise of external dynamic
inputs and (ii) the systematic fluctuations of the network
response to those inputs. The result is fluctuations of the
network state about a moving average in a multidimensional
state space. This is realized, not only by dynamic external
inputs, but also by the physiological responses of the
network to those inputs, e.g., synaptic plasticity. In terms
of the CBM, this means that the spontaneous activation
probability p; and the branching parameter x will be
dynamic—a situation not considered in our simulations.

According to our theory, however, fluctuations of the
empirical values of p, and the branching ratio ¢ (which we
use as a proxy for the «) induce fluctuations in the values of
the effective critical exponents and hence the apparent
universality class. Within a sufficiently short time frame,
state fluctuations will be minimal; it is under these
conditions that the network state can best be characterized
as sub-, quasi-, or super-critical. Second, in order to satisfy
quasicritical scaling, empirical data must be taken from or
near the peak of maximum susceptibility, i.e., the quasi-
critical state [7].

A reliable method is then needed to quantify neural
network state fluctuations, bin the data to adjust the time
frame, and finally characterize the data. We start by
quantifying these fluctuations in the language of statistical
physics, introducing the local time fluctuation (LTF)
of the network state. With a neural network of size L,
we write the density of active nodes at time ¢ as
pi(t) = (/L) Y2 8, (y1» where z; € {0,1} represents
the state of quiescence or spiking, respectively, for neuron
i. The mean population firing rate over a short time frame of
AT time steps is then (p;(1)), = (1/AT) 2T, p, (). The
variability of p,(¢) is the dynamical susceptibility [7],

TABLE 1II. Effective exponents from empirical data. Sets (1)
and (2) correspond to mouse cortical culture data and (3) corre-
sponds to rat data.

Set gy c s i (Ir=1)/(Fs—1) 7

1 0.0096 0.7101 1.57(2) 1.73(4) 1.29(3) 1.33(1)
2 0.019 0.7322 1.58(3) 1.77(5) 1.33(5) 1.33(2)
3 0.0475 0.7433 1.65(6) 1.98(5) 1.50(6) 1.48(7)

x = L[(p3(1)), — {p1(1))?]. Because y varies dramatically
depending on L, we normalize by the number of neurons to
define the LTF = (1/(p,(1)),)\/x/L. Effective exponents
are then calculated from bins with similar, intermediate LTF
values [18]. Alternatively, calculating ¢ and y for each bin
and mapping to LTF values shows that its intermediate
values correspond to maxima of y and intermediate values of
o. This is consistent with predictions made by our theory.

We analyze the dense microelectrode array recordings
from rodent cortical tissue that were publicly posted on the
CRCNS website [20,21]. For selection of specific datasets,
we required a bump in the avalanche distributions when the
data were in the supercritical regime (larger bins) and no
bump when in the subcritical regime (smaller bins; see
Fig. 2). Although many datasets were consistent with
quasicriticality, here we present only the 3 sets that satisfied
these stringent criteria (for a clear description of all criteria
involved in the analysis see the Supplemental Material
[18]). Table II lists results from the three datasets, along
with values of the effective exponents. Datasets (1) and (2)
are from mouse organotypic cortical cultures with number
of neurons L = 310 and L = 180, respectively, binned at
1 ms. Dataset (3) is from a rat organotypic cortical culture
with L = 107 and is binned at 5 ms. Although the rest of
the datasets did not satisfy the stringent criteria, nonethe-
less, the determined effective exponents lie along the
scaling line [18].

In agreement with our predictions, the values of y and o
from the data grow with the effective exponents. We report
here branching ratios estimated from dividing the number
of descendant neurons by the number of ancestor neurons.
We found more advanced methods [23] produced the same
trends, but with smaller differences. Our experimental data
(together with data from Ref. [11]) and theoretical simu-
lations are summarized in Fig. 3.

Outlook.—We have shown that quasicriticality can
explain why cortical networks do not produce a single
set of characteristic exponents as expected from a univer-
sality class. External inputs force these networks to operate
in nonequilibrium conditions, away from a critical point.
Yet the exponents produced under varying conditions still
satisfy a scaling relation, indicating closeness to criticality.
Quasicriticality predicts that increased drive will force
cortical networks to depart from criticality, near the
Widom line, preserving maximal susceptibility and
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information transmission. Moving along this line as drive is
increased, the branching ratio at maximal susceptibility will
decrease, and susceptibility will decrease. Simulations
predict this, and the best datasets we have are consistent
with these predictions.

Future experiments must causally manipulate external
drive, carefully tracking how the branching ratio and the
susceptibility respond. These experiments have the poten-
tial to refute quasicriticality, or to further strengthen its
standing.
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