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Dual-unitary quantum circuits can be used to construct 1þ 1 dimensional lattice models for which
dynamical correlations of local observables can be explicitly calculated. We show how to analytically
construct classes of dual-unitary circuits with any desired level of (non-)ergodicity for any dimension of the
local Hilbert space, and present analytical results for thermalization to an infinite-temperature Gibbs state
(ergodic) and a generalized Gibbs ensemble (nonergodic). It is shown how a tunable ergodicity-inducing
perturbation can be added to a nonergodic circuit without breaking dual unitarity, leading to the appearance
of prethermalization plateaux for local observables.
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Introduction.—The dynamics of isolated systems under
general unitary evolution remains one of the fundamental
problems in many-body physics. Originating as a model for
quantum computation [1], unitary circuits can serve as a
minimal model for the study of general unitary dynamics
governed by local interactions [2–8]. Such circuits also
form the basis of Google’s Sycamore processor [9]. The use
of minimal models for unitary dynamics is motivated by the
fact that analytically tractable models of many-body
quantum dynamics remain scarce. While a great deal of
understanding has been reached through the study of
integrable models, these are nongeneric by definition
[10–13]. Although unitary circuit dynamics exhibit many
of the features expected of generic many-body dynamics
and present a natural realization of a periodically driven
(Floquet) system [14,15], exact results generally require the
presence of randomness in the circuit.
Recently, dual-unitary circuits were identified as a class

of unitary circuits for which the dynamics of correlations
remains tractable, circumventing the need for integrability or
randomness [16,17]. These gates are characterized by the
property that the resulting circuit evolution is unitary in both
time and space. As a result, correlations vanish everywhere
except at the edge of the causal light cone [16], where they
can be calculated analytically at all time scales [18]. At long
times the resulting correlations can remain constant, oscil-
late, or decay to either an ergodic or nonergodic value. This
makes these models particularly attractive for the study of
thermalization: after sufficiently long times, it is expected
that all local correlations in a many-body system can be
described by a reduced density matrix depending only on the
conservation laws present in the system [19–21].
The study of these models started with the realization

that the kicked Ising model (KIM) supported an exact
calculation of the spectral form factor and entanglement

spectrum at particular values of the coupling constants
[22,23]. Reference [17] subsequently recast the KIM as a
unitary circuit and identified dual unitarity as the under-
lying reason for the degenerate entanglement spectrum and
maximal entanglement growth. Reference [16] introduced
the class of dual-unitary gates, and constructed a complete
manifold of nontrivial dual-unitary gates for a two-
dimensional local Hilbert space. Later works studied more
general dynamics, identifying matrix product state initial
conditions preserving the solubility of the dynamics [24],
correlations of general local operators [25], calculated out-
of-time-order correlators [18], later revisited in the general
context of scrambling in random unitary circuits [26].
Remarkably, the dynamics generated by perturbed dual-
unitary gates can be efficiently described through a path-
integral formalism [27].
Almost all such calculations only depend on dual

unitarity: these models are solvable for any dimension of
the local Hilbert space. Despite this salient feature, sys-
tematic realizations of dual-unitary circuits remain rela-
tively restricted. Analytical parametrizations of nontrivial
dual-unitary gates are restricted to a two-dimensional local
Hilbert space (qubits) [16] and to kicked models built on
complex Hadamard matrices for larger Hilbert spaces [25].
Numerically, an iterative protocol has been proposed to
generate circuits arbitrarily close to dual unitarity [28], but
this does not allow analytic predictions or targeting gates
with a desired level of ergodicity.
In this work, we present an analytic parametrization of

dual-unitary gates for arbitrary local Hilbert space dimen-
sion q, returning circuit models where the dynamics of
observables remain analytically tractable. The level of
ergodicity is classified through the eigenvalues of quantum
channels determining light-cone dynamics, and we show
how to systematically realize ensembles of circuits with any
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desired level of ergodicity. The steady-state values of the
correlation functions are shown to be set by either infinite-
temperature Gibbs states or generalized Gibbs ensembles
(GGEs) in ergodic and nonergodic systems, respectively. In
all examples, the total number of free variables scales as q2.
Additionally, we illustrate how an ergodicity-inducing
perturbation on top of a nonergodic unitary gate can be
introduced without destroying dual unitarity, leading to a
class of solvable models illustrating prethermalization
to a GGE before eventual thermalization to a featureless
infinite-temperature state.
A PYTHON implementation of all presented calculations

is available online [29].
Dual-unitary gates.— We consider systems where the

time evolution is governed by a unitary circuit consisting of
two-site operators, where each gate U and its Hermitian
conjugate can be graphically represented as

ð1Þ

In this notation each leg carries a local q-dimensional
Hilbert space, and the indices of legs connecting two
operators are implicitly summed over (see, e.g.,
Ref. [30]). Unitarity is graphically represented as

ð2Þ

The dual of U is defined through Ũab;cd ¼ Udb;ca, and dual
unitarity is defined as the additional unitarity of Ũ [16,17],

ð3Þ

The full evolution UðtÞ at time t consists of the t-times
repeated application of staggered two-site gates

Given an infinite lattice with at each site a local Hilbert
space Cq, we consider correlation functions

cρσðx; tÞ ¼ tr½U†ðtÞρð0ÞUðtÞσðxÞ�=trð1Þ; ð4Þ

where ρ; σ ∈ Cq×q are operators acting on a local
q-dimensional Hilbert space, and ρðxÞ, σðxÞ act as ρ, σ
on site x and as the identity everywhere else. We take
trðρÞ ¼ 1 to make the connection with (reduced) density
matrices, although this is not a necessary assumption and
these can be seen as infinite-temperature correlation func-
tions. Dual unitarity implies that all correlation functions
factorize as cρσðx; tÞ ¼ trðρÞtrðσÞ=q, except on the edges of
the light cone x ¼ �t [16]. These nontrivial correlation
functions can be evaluated as

cρσð�t; tÞ ¼ tr½Mt
�ðρÞσ�; ð5Þ

where M� ∈ Cq2×q2 are linear maps defined as

MþðρÞ ¼ tr1½U†ðρ ⊗ 1ÞU�=q; ð6Þ

M−ðρÞ ¼ tr2½U†ð1 ⊗ ρÞU�=q: ð7Þ

These are completely positive and trace-preserving maps,
acting as a quantum channel. From the unitarity it follows
that M�ð1Þ ¼ 1, such that these channels are unital.
Graphically, we can represent

ð8Þ

with matrix elements such thatMðρÞab ¼
P

cd Mab;cdρcd.
Note that light-cone correlation functions can always be
calculated in this way, irrespective of dual unitarity [18].
As shown in Ref. [16], the long-time behavior of all

nontrivial correlations and hence the level of ergodicity is
fully determined by the number of eigenvalues λab of M�
with unit modulus, jλabj ¼ 1, with the corresponding
eigenoperators acting as nondecaying modes, excluding
the trivial eigenvalue 1 corresponding to the identity
operator. At long times, ergodic behavior is evidenced
by the convergence of correlations to their thermal value
limt→∞ cρσð�t; tÞ ¼ trðσÞ=q, consistent with thermaliza-
tion to an infinite-temperature Gibbs state ρGibbs ¼ 1=q
such that limt→∞cρσð�t; tÞ ¼ trðρGibbsσÞ, ∀ σ.
The unitary gates are generally not parity invariant,

leading to “chiral” behavior where M� can have different
numbers of nontrivial eigenvalues and corresponding non-
decaying modes. In the following, we will consider the
behavior along x ¼ t, governed by the q2 eigenvalues of
Mþ, but this can be immediately extended to x ¼ −t.
(1) Noninteracting: All q2 eigenvalues equal 1, dynami-

cal correlations remain constant. (2) Nonergodic: More
than one but less than q2 eigenvalues are equal to 1,
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dynamical correlations decay to a nonthermal constant. (3)
Ergodic and nonstationary: All nontrivial eigenvalues are
different from 1, but there exists at least one eigenvalue
with unit modulus. All correlations oscillate around a time-
averaged value corresponding to the thermal value. (4)
Ergodic and stationary: All nontrivial eigenvalues lie within
the unit disc and all dynamical correlations decay to their
thermal value.
Parametrization.—We propose a parametrization of

dual-unitary gates U ∈ Cq2×q2 as

ð9Þ

with arbitrary one-site unitary gates u�; v� ∈ SUðqÞ, and
where all entanglement is generated by the two-site unitary
V½J� defined as

V½J�ab;cd ¼ δadδbceiJab ; ð10Þ

with phases set by an arbitrary real matrix J ∈ Rq×q. Both
the unitarity and dual unitarity of V½J� can be readily
verified, and the additional one-site unitaries leave both
properties intact. We do not expect this parametrization to
be exhaustive—the construction from Ref. [28] gives rise to
numerically dual-unitary gates that cannot be recast
as Eq. (9).
Focusing on x ¼ t, we write M½U� ¼ Mþ and

u; v ¼ uþ; vþ, but calculations for x ¼ −t are analogous.
Plugging the parametrization Eq. (9) in the definition of the
quantum channel Eq. (8), we find

M½U� ¼ ðv† ⊗ vTÞM½V�ðu† ⊗ uTÞ: ð11Þ

The dependence on u− and v− drops out and MðJÞ≡
M½V� can be evaluated as

MðJÞab;cd ¼
1

q

Xq
e;f¼1

V½J��cf;eaV½J�df;eb ¼ σabδacδbd: ð12Þ

The channel MðJÞ is diagonal, with

σab ¼
1

q

Xq
f¼1

e−iðJaf−JbfÞ: ð13Þ

In this way, Eq. (11) corresponds to a singular value
decomposition of M½U�. Graphically, this can be repre-
sented as

ð14Þ

The singular values jσabj ≤ 1 are the absolute values of the
diagonal elements of MðJÞ, and the unitary transforma-
tions are fixed by the one-site unitaries. Furthermore, left
and right eigenoperators of MðJÞ are given by the basis
operators eab ∈ Rq×q (defined as the operators with a
single nonzero matrix element ab) with corresponding
eigenvalue σab. There are q guaranteed eigenvalues equal to
1, corresponding to the diagonal matrices eaa; a ¼ 1;…; q,
and the remaining qðq − 1Þ eigenvalues arise in complex
conjugate pairs, σab ¼ σ�ba. J determines the singular
values of U, such that all quantum channels are guaranteed
to have at least q singular values equal to one [31]. In the
following, we show how the parametrization Eq. (9) can be
tuned to return classes of dual-unitary models with any
given level of ergodicity. The main idea is that V½J� gives
rise to a diagonal quantum channel in which we can tune
the eigenvalues through J, after which the one-site unitaries
can be chosen to leave a subset of these eigenvalues
invariant.
Ergodic and mixing gates.—Choosing J ∈ Rq×q, u;

v ∈ SUðqÞ arbitrary, the unitaries do not exhibit any
additional structure and the resulting channel will generally
only have the trivial eigenvalue associated with the
identity. Since M½U� will generally not be Hermitian,
its singular values are unrelated to its eigenvalues, and
the left and right eigenoperators will differ. All nontrivial
eigenvalues have a modulus smaller than one and
limt→∞MtðρÞ ¼ trðρÞ1=q ¼ 1=q, consistent with thermal-
ization to the infinite-temperature state and thermal corre-
lations limt→∞cρσðt; tÞ ¼ trðσÞ=q. Note that this does not
imply that arbitrary multisite operators will thermalize, but
nonergodicity in multisite operators would require an
additional structure in U that is not generically present.
Nonergodic gates.—Nonergodic gates have n nontrivial

unit eigenvalues with 1 ≤ n ≤ q2 − 1. Such nonergodic
models can be realized in different ways. First, we consider
nonergodic models where n ≤ q − 1 and the conserved
operators are mutually commuting and hence simultane-
ously diagonalizable. This can be done by imposing a
block-diagonal structure on the unitaries u and v, turning n
singular values into eigenvalues. Taking

u ¼ w

� 1n 0

0 uq−n

�
; v ¼

� 1n 0

0 vq−n

�
w†; ð15Þ

in which uq−n; vq−n ∈ SUðq − nÞ and w ∈ SUðqÞ,
the resulting quantum channel has n additional unit
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eigenvalues and n mutually commuting eigenoperators
ca ¼ weaaw†; a ¼ 1;…; n. The block-diagonal matrices
preserve the diagonal structure for the eigenvalues σab of
MðJÞ with a; b ≤ n, whereas w leads to a unitary trans-
formation of the quantum channel and its eigenoperators,
leaving the eigenvalues invariant [32].
It follows that Qa ¼

P
x∈2N caðxÞ are conserved quan-

tities, satisfying ½Qa;Uðt ¼ 2Þ� ¼ 0. Even stronger, these
behave as solitons that are simply shifted along the light
cone during dynamics (see Ref. [33]). The steady-state
correlations follow from the overlap of ρ with the con-
served charges. As shown in the Supplemental Material,
these are described by a GGE if the initial operator
represents a density matrix,

lim
t→∞

MtðρÞ ¼ exp

�Xn
a¼1

ðμa − μÞca þ μ1

�
¼ ρGGE; ð16Þ

where the μa and μ follow from ρ as

μa ¼ ln ðtrðρcaÞÞ; μ ¼ ln

�
1 −

P
n
b¼1 trðρcbÞ
q − n

�
: ð17Þ

The GGE state reproduces the initial values of all
conserved operators, trðρcaÞ ¼ trðρGGEcaÞ; a ¼ 1;…; n,
and trðρGGEÞ ¼ 1, and all correlations decay to the GGE
value limt→∞cρσðt; tÞ ¼ trðρGGEσÞ, ∀ σ. Since we focus on
correlations of one-site operators, ρGGE is a single-site
operator corresponding to the reduced density matrix for a
single site. However, this does not guarantee that the
reduced density matrix for larger subsystems also corre-
sponds to a GGE.
Additional unit eigenvalues can be obtained by intro-

ducing additional unit singular values. However, the addi-
tional conserved charges will no longer commute mutually
and the steady state can no longer be recast as a GGE. From
Eq. (13), a necessary condition for additional unit singular
values is for multiple rows of J to be equal. Taking the first
m < n rows of J to be equal leads to mðm − 1Þ additional
singular values λab ¼ 1; a; b ≤ m. For m ≤ n the block-
diagonal structure of Eq. (15) again leaves these singular
values invariant, and the total gate has additional unit-
eigenvalue eigenoperators and hence conserved charges
weabw†, a, b ≤ m. While the final value is no longer
described by a GGE, it still converges to a nonthermal value
set by the overlap of ρ with the (properly orthonormalized)
conserved charges. This can be seen as the limit of the
oscillatory behavior: taking rows of J to be equal up to a
nonzero constant, e.g., for fixed a, b ≤ n setting
Jaf ¼ Jbf þ ϕ; f ¼ 1;…; q, leads to a pair of complex
conjugate eigenvalues λab ¼ ðλbaÞ� ¼ eiϕ. The resulting
correlation functions do not decay but exhibit persistent
oscillations ∝ eiϕt, averaging out to zero for nonzero ϕ,
such that the time-average value corresponds to the GGE
value Eq. (16) in the absence of equal rows.

Noninteracting models.—Noninteracting models are
characterized by all eigenvalues equal to one. This
can be done by taking all rows of J to be equal, setting
all singular values equal to 1. In this case V½J�
corresponds to a swap gate and MðJÞ ¼ 1, such that
M½U� ¼ v†u† ⊗ vu. All eigenvalues have modulus one,
where all eigenvalue are exactly one if v ¼ u†. Dynamical
correlations remain constant and M½U� ¼ 1.
Ergodic and nonstationary models.— Ergodic but non-

stationary dynamics are characterized by 1 ≤ n ≤ q2 − 1
nontrivial eigenvalues that are all different from one but
with unit modulus. This can be done for generic J by
setting u ¼ wP; v ¼ w†, with w ∈ SUðqÞ and in which P is
defined as Pa;b ¼ eiθaδb;aþ1, identifying qþ 1≡ 1, and
θa; a ¼ 1;…; q are arbitrary phases. Considering the sub-
space of unit-eigenvalue (diagonal) eigenoperators of
M½V�, the effect of P is to set P†eaaP ¼ eaþ1;aþ1, such
that Mðw†eaawÞ ¼ w†eaþ1;aþ1w. Within this degenerate
subspace, M acts as a shift operator, with known eigen-
values given by e2πif=q; f ¼ 1;…; q, where the trivial
eigenvalue 1 corresponds to the identity. This leads to
q − 1 nontrivial eigenvalues given by the remaining roots
of unity. At sufficiently long times, all correlation functions
remain nonzero and oscillate around the zero ergodic value,
satisfying cρσðtþ q; tþ qÞ ¼ cρσðt; tÞ. This effectively
realizes a discrete time crystal, where the correlations in
a periodically driven system respond with a period that is an
integer multiple of the driving period [34–36].
Examples.—In Fig. 1, we present numerical examples for

different dynamics. Note that the quantum channel con-
struction does not require all unitaries to be identical [16],

FIG. 1. Correlation functions cρσðt; tÞ, where ρ, σ ∈ Cq×q are
randomly generated matrices with trðσÞ ¼ 0 leading to a thermal
value cρσðt; tÞ → 0. Local Hilbert space dimension q ¼ 6 and 4
different operators are considered. After an initial transient
regime, in the ergodic models the correlations either exponen-
tially decay to zero (stationary) or oscillate around zero (non-
stationary) with period q, whereas in the nonergodic models the
correlations decay to a nonzero value (stationary) with possible
oscillations around these nonzero values with a tunable period
(nonstationary).
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such that individual unitary gates can be randomly selected
while still keeping the overall level of ergodicity of the full
circuit. Level spacing statistics can also be calculated, a
common indicator of chaos and ergodicity, returning the
expected GUE statistics for ergodic mixing gates and
Poisson statistics otherwise, consistent with the proposed
classification [37,38].
As an additional example, we consider a dual-unitary

model for prethermalization with an arbitrarily large local
Hilbert space. For a nonergodic model, the system locally
thermalizes to a GGE consistent with the conserved
charges. Any perturbation generally destroys all nontrivial
conservation laws, inducing thermalization to the infinite-
temperature state. However, for small perturbations we
expect a separation of time scales: the correlations initially
prethermalize to the GGE values of the nonergodic model
before eventual thermalization to the infinite-temperature
thermal values [39,40].
Given general J, we can introduce an ergodicity-

inducing perturbation on top of a nonergodic model starting
from Eq. (11), setting

u¼ eiϵWuw

�1n 0

0 uq−n

�
; v¼

�1n 0

0 vq−n

�
w†e−iϵWv;

with again uq−n; vq−n ∈ SUðq − nÞ,w ∈ SUðqÞ, and where
the perturbation is generated by two (nonequal) Hermitian
operators Wu;v ∈ Cq×q and tuned through ϵ. At ϵ ¼ 0, this
reduces to a nonergodic model with n conservation laws,
whereas any finite ϵ results in an ergodic model. This is
illustrated in Fig. 2, where for small ϵ the dynamics of the

different circuits are indistinguishable, seemingly converg-
ing to the nonthermal steady-state value of the nonergodic
model. However, the effect of the perturbation becomes
apparent at longer times, where the models with nonzero ϵ
eventually thermalize to the infinite-temperature state
indicated by vanishing correlations. The time scale needed
to reach the eventual thermal state is determined by the
subleading eigenvalue of M and scales as ϵ−2, as it can be
verified from degenerate perturbation theory that the first-
order correction on the unit eigenvalues vanishes.
Conclusion.—It was shown how to generate classes of

dual-unitary gates with arbitrary local Hilbert space dimen-
sion and any desired level of ergodicity. Evolving a local
operator under a circuit composed of dual-unitary gates,
local correlation dynamics remain analytically tractable,
such that these models can be used to study both chaotic
and nonergodic dynamics in systems with an arbitrarily
large Hilbert space. Focusing on one-site operators,
stationary steady-state correlations were analytically shown
to be given by the infinite-temperature Gibbs state (ergodic)
or a generalized Gibbs ensemble (nonergodic). In both
cases, persistent correlations characterizing time crystals
can also be included on top of the steady-state value. The
proposed construction returns exactly solvable models of
thermalization, where we also illustrated prethermalization
to the latter before eventual thermalization to the former in
a nonergodic model with added ergodicity-inducing
perturbation.
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