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We report, for the first time, the long-awaited detection of diffuse gamma rays with energies between
100 TeV and 1 PeV in the Galactic disk. Particularly, all gamma rays above 398 TeV are observed apart
from known TeV gamma-ray sources and compatible with expectations from the hadronic emission
scenario in which gamma rays originate from the decay of π0 ’s produced through the interaction of protons
with the interstellar medium in the Galaxy. This is strong evidence that cosmic rays are accelerated beyond
PeV energies in our Galaxy and spread over the Galactic disk.

DOI: 10.1103/PhysRevLett.126.141101

Introduction.—The cosmic-ray energy spectrum has
approximately a power-law shape dN=dE ∝ Ep in an
energy region between 1010 and 1020 eV [1]. One of the
most prominent features of the spectrum is the so-called
knee at 4 × 1015 eV (¼ 4 PeV), where the spectrum steep-
ens with its power-law index changing from p ¼ −2.7 to
−3.1 [2,3]. In a scenario most widely accepted, cosmic rays
are accelerated up to PeVenergies by energetic objects in our
Galaxy, such as supernova remnants, and well confined in
the Galaxy up to the knee energy by the Galactic magnetic
field [4,5], although source objects and acceleration mech-
anisms are still under discussion. To confirm the theory
predicting the Galactic origin of the PeV cosmic rays,
therefore, it would be conclusive to experimentally identify
the objects in our Galaxy, called “PeVatrons,” which are
accelerating cosmic rays up to PeV energies.
In recent decades, high-energy gamma-ray observations

have been utilized to identify cosmic-ray sources by
detecting the arrival direction of gamma rays produced
by cosmic rays, because gamma rays travel straight from
the source free from the magnetic deflection. Through the
hadronic interaction with ambient matters, PeV cosmic rays
produce neutral pions which decay into gamma rays with
energies as high as 100 TeV [6–8]. Recently, the ground-
based Cherenkov telescopes and air shower (AS) arrays
observed gamma rays with energies up to a few tens of
TeV from more than 100 sources in the Galaxy [9–11]. The
Tibet ASγ [12] and high altitude water cerenkov (HAWC)
experiments [13] also detected gamma rays beyond
100 TeV from a few sources which are very good
candidates of PeVatrons. However, there has been no
conclusive evidence for the cosmic-ray PeVatron reported
so far.
Gamma-ray telescopes on board satellites, such as the

EGRET and Fermi-LAT, have precisely observed diffuse
gamma rays from the Galactic disk in an energy range
0.1 < E < 100 GeV [14,15]. The gamma-ray distribution
is extended more than a few degrees in Galactic latitude,
similar to the distribution of interstellar gas. The measured
spectra are now established to be dominated by emissions
from the interaction of cosmic rays including electrons with
interstellar gas and magnetic field in this energy region
[15]. In the higher energy range, the Milagro experiment
reported TeV diffuse gamma-ray emissions from the
Cygnus region in the Galactic disk [16], while the

astrophysical radiation with ground-based observatory at
Yangbajing (ARGO-YBJ) experiment reported diffuse
gamma rays with 0.35 < E < 2 TeV extended over
Galactic longitude (l) between 25° < l < 100° [17].
Overall, their observed fluxes are consistent with the
standard Fermi-LAT model for the diffuse Galactic emis-
sion. At the highest energy region, the Chicago air shower
array - Michigan muon array (CASA-MIA) experiment
presented the upper limits of Galactic diffuse gamma rays
with 140 TeV < E < 1.3 PeV [18].
In this Letter, we report on the detection of diffuse

gamma rays with 100 TeV < E < 1 PeV from the Galactic
disk with the Tibet air shower array and muon detector
array (Tibet ASþMD array) and present evidence for PeV
cosmic rays being accelerated and confined in the Galaxy.
Experiment.—In order to observe high-energy gamma

rays with high sensitivity, we started a new hybrid experi-
ment using the surface AS array combined with the
underground water-Cherenkov-type muon detector array
at Yangbajing (90.522 °E, 30.102 °N; 4300 m above sea
level) in Tibet, China. The AS array, covering a large area
of 65 700 m2, precisely measures the arrival direction and
energy of each primary cosmic ray, while the underground
muon detector array, with a detection area of 3400 m2

beneath the AS array, measures the number of muons in
each AS. Because an AS induced by a gamma ray contains
many fewer muons than an AS induced by a primary
cosmic ray in the atmosphere, the muon detector array
enables us to efficiently discriminate cosmic-ray back-
ground events from gamma-ray signals [19]. Based on this
technique, we suppressed more than 99.9% of cosmic-ray
background events above 100 TeV and succeeded in
detecting unprecedentedly high-energy gamma rays from
the Crab Nebula. For more details, please see [12].
Data analysis.—The energy and arrival direction of each

gamma ray are reconstructed using the AS particle density
and timing recorded at each scintillation detector compos-
ing the AS array. The angular resolution (50% contain-
ment) is estimated to be approximately 0.22° and 0.16° for
100 and 400 TeV gamma rays, respectively. The pointing
accuracy has been estimated to be less than 0.06° from the
observation of the Crab Nebula as described in the
Supplemental Material of our previous Letter [12].
To estimate the gamma-ray energy, we use S50 defined as

the particle density detected in anAS surface detector (ρ) at a
perpendicular distance of 50 m from the AS axis in the
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best-fit Nishimura-Kamata-Greisen (NKG) function [20].
The energy resolutions with S50 are roughly estimated to
be 20% and 10% for 100 and 400 TeV, respectively. The
absolute energy scale uncertainty was estimated to be 12%
from thewestwarddisplacement of theMoon’s shadowcenter
due to the geomagnetic field [21]. The live time of the dataset
is 719 days fromFebruary 2014 toMay 2017, and the average
effective detection time for the Galactic plane observation is
approximately 3700 h at the zenith angle less than 40°. The
data selection criteria are the same in our previous work [12]
except for the muon cut condition. According to the CASA-
MIA experiment, the marginal excess along the Galactic
plane in the sub-PeV energies is 1.63 σ, and the fraction of
excess to cosmic-ray background events is estimated to be
approximately 3 × 10−5 [18]. In order to search for signals
with such a small excess fraction,we adopt a tightmuon cut in
the present analyses requiring for gamma-ray-like events to
satisfyΣNμ < 2.1 × 10−4 ðΣρÞ1.2 or ΣNμ < 0.4, where ΣNμ

is the total number of muons detected in the underground
muon detector array. This is just one order of magnitude
tighter than the criterion used in our previous work [12]. The
cosmic-ray survival ratio with this tight muon cut is exper-
imentally estimated to be approximately 10−6 above 400TeV,
while the gamma-ray survival ratio is estimated to be 30% by
the MC simulation. The comparison between the cosmic-ray
data and the MC simulation is described in Fig. S1 in
Supplemental Material [22].
Results and discussion.—Figure 1 shows arrival direc-

tions of gamma-ray-like events in (a) 100ð¼102.0Þ < E <
158ð¼102.2Þ TeV, (b) 158ð¼102.2Þ<E<398ð¼102.6ÞTeV,
and (c) 398ð¼102.6Þ < E < 1000ð¼103.0Þ TeV, remaining
after the tight muon cut. It is seen that the observed arrival
directions concentrate in a region along the Galactic plane
(see also Fig. 2). Particularly in Fig. 1(c), 23 gamma-ray-
like events are observed in jbj < 10° which we define as the
on region (NON ¼ 23), while only ten events are observed
in jbj > 20° which we define as the off region (NOFF ¼ 10).
Since the total number of events before the tight muon cut
is 8.6 × 106, the cosmic-ray survival ratio is estimated to be
1.2 × 10−6 in jbj > 20° above 398 TeV. We use NOFF in
jbj > 20° to estimate the number of cosmic-ray background
events, because the contribution from extragalactic gamma
rays in E > 100 TeV is expected to be strongly suppressed
due to the pair-production interaction with the extragalactic
background light. The mean free path lengths for the pair
production for 100 TeV and 1 PeV are a few megaparsecs
and 10 kpc, respectively [29].
Since the ratio (α) of exposures in on and off regions is

estimated to be 0.27 by the MC simulation with our
geometrical exposure, the expected number of background
events in the on region with jbj < 10° is NBG ¼ αNOFF ¼
2.73, and the Li-Ma significance [30] of the diffuse gamma
rays in the on region is calculated to be 5.9 σ. The number
of events and the significances in each energy bin are
summarized in Table S1 in Supplemental Material [22].

The observed distribution of the number of muons for
E > 398 TeV after the muon cut is consistent with that
estimated from the gamma-ray MC simulation as shown in
Fig. S2 in Supplemental Material [22]. The highest-energy
957ðþ166

−141ÞTeV gamma ray is observed near the Galactic
plane, where the uncertainty in energy is defined as the
quadratic sum of the absolute energy-scale error (12%) and
the energy resolution [12]. Solid circles in Fig. 2 display
NON − NOFF as a function of b in (a) 100 < E < 158 TeV,
(b) 158 < E < 398 TeV, and (c) 398 < E < 1000 TeV.
The concentration of diffuse gamma rays around the
Galactic plane is apparent particularly in Fig. 2.
In order to estimate contribution from the known

gamma-ray sources, we searched for gamma-ray signals

FIG. 1. The arrival direction of each gamma-ray-like event
observed with (a) 100 < E < 158 TeV, (b) 158<E<398TeV,
and (c) 398 < E < 1000 TeV, respectively, in the equatorial
coordinate. The blue solid circles show arrival directions of
gamma-ray-like events observed by the Tibet ASþMD array.
The area of each circle is proportional to the measured energy of
each event. The red plus marks show directions of the known
Galactic TeV sources (including the unidentified sources) listed
in the TeV gamma-ray catalog [9]. The solid curve indicates the
Galactic plane, while the shaded areas indicate the sky regions
outside the field of view of the Tibet ASþMD array.
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above 100 TeV from the direction of the selected 60
Galactic sources (excluding the extragalactic-type sources
but including the unidentified sources) listed in the TeV
source catalog [9] within jbj < 5° in our field of view
(FOV). We used a search window with a radius of 0.5°
centered at each source direction, which contains more than
90% of gamma-ray events, as shown in Fig. S3 in
Supplemental Material [22]. Since the source extensions
of the HAWC sources above 56 TeV were typically around
0.3° [13], the search window radius 0.5° is appropriate to
exclude most of the contributions from such extended
sources to diffuse gamma rays. Stacking 60 sources, we
found 37 gamma-ray-like events within search windows
against 8.7 background events, which corresponds to

6.8 σ above 100 TeV, while the number of all excess
within jbj < 5° (Nexcess) is 253.5. The fractional source
contribution (Npoint ¼ 37 − 8.7 ¼ 28.3) to the diffuse
component (Ndiffuse¼Nexcess−Npoint¼225.2) is estimated
to be 13% above 100 TeV.
We also searched for gamma-ray signals within a search

window centered at each direction of 38 gamma-ray-like
events in E > 398 TeV, but we found no significant signal
above 10 TeV. This implies that these 38 events are orphan
gamma rays as is expected from the diffuse gamma-ray
scenario, although the existence of unknown sporadic or
weak steady sources with very hard spectra in each
direction cannot be ruled out.
Figure 3 shows the distribution of angular distance

between each of 38 gamma-ray-like events in E>398TeV
and its closest Galactic TeV source. Surprisingly, there is no
gamma-ray excess near the known TeV sources. Such high-
energy gamma rays which originate from PeV electrons
should be produced near the sources, due to significant
energy loss via the synchrotron radiation in the magnetic
field around the source. The observed gamma rays are,
therefore, hard to interpret in the leptonic scenario. The
gamma-ray emission by electrons will be also significantly
suppressed above 100 TeV due to rapid decrease of inverse-
Compton (IC) cross section by the Klein-Nishina effect.
Recently, Lipari and Vernetto [8] developed a model

capable of successfully reproducing the diffuse gamma-ray
or neutrino flux observed in 0.1 GeV < E < 10 PeV, by
utilizing relevant cosmic-ray nuclei and electron spectra,
interstellar gas distribution, soft photon field, gamma-ray
and neutrino production processes, and absorption effects
in the Galaxy. They tested two different models named the
space-independent and space-dependent models. The cos-
mic-ray spectrum in the first model is assumed to be
identical everywhere in the Galaxy, while the spectrum in

FIG. 2. Gamma-ray excess counts as a function of Galactic
latitude with (a) 100 < E < 158 TeV, (b) 158 < E < 398 TeV,
and (c) 398 < E < 1000 TeV. The excess count is calculated
from the observed event number after subtracting the estimated
background event number (see the text). The Galactic longitude
of the arrival direction in each figure is integrated across our FOV
(approximately 22° < l < 225°). The solid circles show the
experimental data, while the shaded histograms display the
model profile [8] rebinned in every (a),(b) 1° and (c) 5° of
the Galactic latitude. The downward arrows show upper limits of
excess at 68% confidence level. The number of excess in the
model, which is independent of energy, is normalized to the
observed number within jbj < 5°.

FIG. 3. The distribution of the angular distance between the
arrival direction of each observed gamma-ray-like event with E >
398 TeV and the direction of its closest known TeV source listed
in the TeV gamma-ray catalog [9]. The red solid circles show the
observed data, while the dashed and solid histograms display the
MC results expected from the isotropic event distribution and the
diffuse gamma-ray model [8], respectively, to be observed with
our geometrical exposure.
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the second model is assumed to be harder in the central
region of the Galaxy than that at Earth as indicated by the
observed spectral index of Galactic diffuse gamma rays in
0.1 < E < 100 GeV. This kind of scenario was also dis-
cussed elsewhere [31]. Both models can reproduce the
observed flux and spatial distribution of arrival directions
by Fermi-LAT in the GeV energy region. The predicted
gamma-ray spectrum above 1 GeV is also dominated by
the contribution from the hadronic interaction between the
interstellar matter and cosmic rays. It was concluded that
the contribution to the diffuse gamma rays from the IC
scattering and bremsstrahlung by relativistic electrons is
less than 5% compared with the hadronic process
above 100 TeV, considering the steep electron and positron
spectra with p ¼ −3.8 measured by high energy stereo-
scopic system (H.E.S.S.) [32], dark matter particle explore
(DAMPE) [33], and calorimetric electron telescope
(CALET) [34]. Another model [35] showed the IC scatter-
ing contribution in the low Galactic latitude is negligible
above 20 TeV.
Gray histograms in Fig. 2 show the prediction of

the space-independent model [8]. It is seen that the
distribution in Figs. 2(a) and 2(b) is overall consistent
with the model prediction. The distribution in Fig. 2(c)
observed in 398 < E < 1000 TeV looks broader than that
in Figs. 2(a) and 2(b), but it is also statistically consistent
with the prediction rebinned in every 5° of the Galactic
latitude (b).
Figure 4 shows the observed differential energy spectra

of diffuse gamma rays, compared with the model predic-
tions by Lipari and Vernetto [8] in which gamma-ray
spectra are calculated in (a) 25° < l < 100° and
(b) 50° < l < 200° along the Galactic plane, each in
jbj < 5°. The measured fluxes by the Tibet ASþMD
array are summarized in Table S2 in Supplemental Material
[22]. These fluxes are obtained after subtracting events
within 0.5° from the known TeV sources, and the system-
atic error of the observed flux is approximately 30% due to
the uncertainty of absolute energy scale [21]. We corrected
time variation of detector gain at each detector based on the
single-particle measurement for each run. The time varia-
tion of gamma-ray-like excess above 100 TeV in jbj < 5° is
stable within approximately 10%. It is seen that the
measured fluxes by the Tibet ASþMD array are compat-
ible with both the space-independent and space-dependent
models based on the hadronic scenario. As a leptonic
model, it is proposed that gamma-ray halos induced by the
relativistic electrons and positrons from pulsars explain
the Galactic diffuse gamma rays above 500 GeV [36].
However, the gamma-ray flux predicted by this model has
an exponential cutoff well below 100 TeV and is incon-
sistent with the observation by Tibet ASþMD array [see
Fig. 4(a)].
The observed flux in the highest-energy bin in

398 < E < 1000 TeV looks higher than the model

prediction, but it is not inconsistent with the model when
the statistical and systematic errors are considered. Above
398 TeV, the total number of observed events is ten
in each of 25° < l < 100° and 50° < l < 200°, which
includes the Cygnus region around l ¼ 80°. Interestingly,
four out of ten events are detected within 4° from the center
of the Cygnus cocoon, which is claimed as an extended
gamma-ray source by the ARGO-YBJ [37] and also
proposed as a strong candidate of the PeVatrons [38],
but not taken into account in the model [8]. If these four
events are simply excluded, the observed flux at the highest
energy in Fig. 4 better agrees with model predictions.
The high-energy astrophysical neutrinos are also a good

probe of the spectrum and spatial distribution of PeV
cosmic rays in the Galaxy [39,40]. According to Lipari and
Vernetto [8], the diffuse gamma-ray or neutrino fluxes
predicted near the Galactic Center (jlj < 30°) by the
space-dependent model are more than 5 times higher

FIG. 4. Differential energy spectra of the diffuse gamma rays
from the Galactic plane in the regions of (a) jbj < 5°, 25° < l <
100° and (b) jbj < 5°, 50° < l < 200°, respectively. The solid
circles show the observed flux after excluding the contribution
from the known TeV sources listed in the TeV gamma-ray catalog
[9], while the solid and dashed curves display the predicted
energy spectra by the space-independent and space-dependent
models by Lipari and Vernetto [8], respectively (see the text). The
dotted curve in (a) shows the flux predicted by a leptonic model
[36] in which gamma rays are induced by relativistic electrons
and positrons from pulsars. Solid squares in (a) and triangles with
arrows in (b) indicate the flux measured by ARGO-YBJ [17] and
the flux upper limit by the CASA-MIA experiment [18],
respectively. The error bar shows 1σ statistical error.
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than that predicted by the space-independent model in
100 TeV < E < 10 PeV. Therefore, the gamma-ray and
neutrino observations in the Southern hemisphere will also
play important roles to understand or constrain the spatial
distribution of PeV cosmic rays in the Galaxy. Probing PeV
diffuse gamma rays and neutrinos from the large-scale
structures, such the Fermi bubble [41] and the possible dark
matter halo in the Galaxy [42,43], will be also interesting.
Conclusions.—We successfully observed the Galactic

diffuse gamma rays in 100 TeV < E < 1 PeV by the Tibet
ASþMD array. Particularly, in the energy region above
398 TeV, we found 23 gamma-ray-like events against 2.73
background events, which corresponds to 5.9 σ statistical
significance, in jbj < 10° in our FOV. The highest energy of
the observed gamma ray is 957ðþ166

−141Þ TeV, which is nearly
1 PeV. The gamma-ray distribution is extended around the
Galactic plane apart from known Galactic TeV gamma-ray
sources. We also found no significant signal above 10 TeV
in directions of 38 gamma-ray-like events above 398 TeV,
which implies that these events are orphan gamma rays as is
expected from the diffuse gamma-ray scenario. The mea-
sured fluxes are overall consistent with recent models
assuming the hadronic cosmic-ray origin. These facts are
hard to interpret with the leptonic cosmic-ray origin,
indicating that sub-PeV diffuse gamma rays are produced
by the hadronic interaction of protons, which are accel-
erated up to a few PeVenergies (or possibly ∼10 PeV) and
escaping from the source, with the interstellar gas in our
Galaxy. Hence, we conclude that the PeVatrons inevitably
exist in the present and/or past Galaxy accelerating cosmic
rays which spread in the Galaxy being well confined
around the Galactic disk.
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