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Overcoming the detrimental effect of disorder at the nanoscale is very hard since disorder induces
localization and an exponential suppression of transport efficiency. Here we unveil novel and robust
quantum transport regimes achievable in nanosystems by exploiting long-range hopping. We demonstrate
that in a 1D disordered nanostructure in the presence of long-range hopping, transport efficiency, after
decreasing exponentially with disorder at first, is then enhanced by disorder [disorder-enhanced transport
(DET) regime] until, counterintuitively, it reaches a disorder-independent transport (DIT) regime,
persisting over several orders of disorder magnitude in realistic systems. To enlighten the relevance of
our results, we demonstrate that an ensemble of emitters in a cavity can be described by an effective long-
range Hamiltonian. The specific case of a disordered molecular wire placed in an optical cavity is
discussed, showing that the DIT and DET regimes can be reached with state-of-the-art experimental setups.

DOI: 10.1103/PhysRevLett.126.153201

Introduction.—Achieving high efficiency for energy or
charge transport in quantum wires is fundamental for
quantum technologies related to quantum computation
and basic energy science [1–11]. One of the main chal-
lenges is to control the detrimental effects of noise and
disorder which naturally occur in realistic situations. It is
well known that disorder induces localization [12,13] and
exponential suppression of transport in typical 1D nano-
structures. One of the most ambitious goals in quantum
transport is to achieve dissipationless quantum wires, able
to transport energy or charge without suffering the detri-
mental effects of disorder and/or noise.
Here, to overcome disorder suppression of transport, we

propose to exploit long-range interactions. Long-range
interactions can arise due to microscopic interactions or
by engineering the coupling to external degrees of freedom.
They have been recently emulated in ion traps [14] and are
relevant in several realistic systems such as cold atomic
clouds [15] and excitonic transport in molecular aggregates
[16–18]. Long-range interactions present many contradic-
tory features [19–21]. Specifically, the interplay of locali-
zation and long-range interactions is widely debated in
literature [19,20,22–28]. Indeed, contrary to the common
lore that long range should destroy Anderson localization
[29,30], strong signatures of localization have been reported
recently in long-range interacting systems [19,22,23], thus
questioning their utility in achieving efficient transport. Here

we demonstrate that localized states in long-range interacting
systems have a hybrid character, with an exponentially
localized peak and extended tail, which allows these states
to support robust quantum transport.
Among the most important features of long-range

systems, there is the emergence of a gapped ground state
[19,31]. In the gapped regime, while the ground state is
extended and robust to disorder, the excited states present a
hybrid nature with an exponentially localized peak super-
imposed to an extended tail [19,32,33]. While being very
relevant to transport, since they constitute the vast majority
of the states, due to their hybrid nature it is not clear what
kind of transport they will be able to support. By using
different standard figures of merit of transport efficiency,
we unveil several regimes directly determined by the hybrid
nature of the excited states. Specifically, we develop a new
method to compute the stationary current, based on an
effective non-Hermitian Hamiltonian formalism, which is
equivalent to a Lindblad master equation and it is much
more efficient. We demonstrate, in the presence of long-
range hopping, the emergence of extremely robust transport
regimes arising as the disorder strength is increased: a
disorder-enhanced transport (DET) regime and, at larger
disorder strength, a disorder-independent transport (DIT)
regime, where transport efficiency is independent of dis-
order over several orders of magnitude of disorder strength.
The latter regime persists until disorder is so large to close
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the energy gap. We can explain the origin of this interesting
behavior by considering that in the presence of an energy
gap, disorder will mix the excited states, while leaving the
ground state fully extended. The presence of an extended
ground state imposes an orthogonality condition on the
excited states which prevents their full single-site locali-
zation and generates an extended tail able to support robust
transport over the whole energy spectrum.
In order to highlight the relevance of our findings, we

analyze realistic setups consisting of an ensemble of emitters
inside a cavity, focusing on the case of molecular chains in
optical cavities. Recently these systems have been studied
experimentally [9] and analyzed theoretically [2,3,34]. Here
we show that, in the strong coupling regime [35,36], the
cavity induces an effective long-range hopping between the
emitters, allowing us to test our findings of both DET and
DIT regimes in state-of-the-art experimental setups.
Model.—As a paradigmatic model of a disordered chain

in the presence of long-range hopping, we analyze the 1D
Anderson model [12] with all-to-all hopping [19], see
Fig. 1(a),

H ¼ H0 þ V with V ¼ −
γ

2

X
i≠j

jiihjj; ð1Þ

where jji is the site basis and γ is the strength of the
distance-independent long-range hopping.H0 describes the
Anderson model where a particle hops between neighbor
sites of a linear chain in the presence of on-site disorder,

H0 ¼
XN
j¼1

ϵjjjihjj þΩ
XN−1

j¼1

ðjjihjþ 1j þ jjþ 1ihjjÞ; ð2Þ

where ϵi are random energies uniformly distributed in
½−W=2;W=2�, whereW is the disorder strength andΩ is the
tunneling transition amplitude between nearest neigh-
bor sites.
The eigenstates of the Anderson Model (γ ¼ 0) are

localized exponentially, ψn ∼ expð−jn − n0j=ξÞ, where ξ ≈
105.2ðΩ=WÞ2 is the localization length in the middle
of the energy band. This implies that the transmission
always decays exponentially with the disorder strength
as ≈ expð−N=ξÞ [37,38].
In the presence of long-range hopping (γ ≠ 0), and in the

absence of disorder (W ¼ 0), the emergence of an energy
gap Δ ¼ Nγ=2 has been found in Refs. [19,31]. Indeed, the
long-range hopping induces the fully symmetric ground
state to be gapped from the other excited states. Disorder
will destroy the energy gap above the disorder threshold
[31] [for details, see the Supplementary Material (SM)
[39] ],

Wgap ¼
γ

2
N lnN: ð3Þ

In order to understand how transport properties are affected
by long-range hopping, we analyze several figures of merit
of transport efficiency, focusing on the stationary current
widely used in literature [2,3,34]. Pumping and draining
are introduced at the chain edges, see Fig. 1(a),
and the dynamics is described by the Lindblad master
equation [43]:

dρ
dt

¼ −
i
ℏ
½H; ρ� þ

X
η¼p;d

Lη½ρ�; ð4Þ

where Lη½ρ� ¼ −fL†
ηLη; ρg þ 2LηρL

†
η are two dissipators

inducing pumping on the first site [Lp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γp=ð2ℏÞ

p j1ih0j]
and draining from the last site [Ld ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γd=ð2ℏÞ

p j0ihNj],
respectively (j0i is the vacuum state). From the steady-state
solution of Eq. (4) one can find the stationary current,

I ¼ γd
ℏ
hNjρSSjNi; ð5Þ

where ρSS is the steady-state density operator. Since the
master equation approach is numerically very expensive,
we use a definition of current based on a non-Hermitian
Schrödinger equation, computationally less expensive.
The results obtained with this approach are identical to the
master equation method, as we prove analytically in Sec. V. B
of the SM [39]. To define the current, we compute the average
time needed to leave the 1D chain if the excitation is initially
on the first site j1i and a drain is present on the last site jNi.
The average transfer time is defined as [44–47]

τ ¼ γd
ℏ

Z
∞

0

tjΨNðtÞj2dt; ð6Þ

(a)

(b)

FIG. 1. (a),(b) Two different setups for a disordered chain with
excitation pumping γp at one edge of the chain and draining γd at
the opposite edge. Here, Ω is the hopping between nearest-
neighbor sites. The arrows indicate the hopping paths available
for an excitation (gray circle) present at the center of the chain.
The energy of the sites is disordered. (a) A long-range coupling
−γ=2 is present between each pair of sites. (b) The chain is placed
inside an optical cavity, where g is the coupling of each site to the
cavity mode.

PHYSICAL REVIEW LETTERS 126, 153201 (2021)

153201-2



where ΨNðtÞ is the probability amplitude on the drain site at
time t, evolved under the effective Hamiltonian Heff [48,49],

ðHeffÞk;l ¼ ðHÞk;l − i
γd
2
δk;Nδl;N; ð7Þ

with H given in Eq. (1) and the non-Hermitian term
representing the drain. A rate equation can be derived, by
assigning a drain frequency 1=τ and a pumping frequency
γp=ℏ, connecting the chain population Pe to the vacuum state
j0i with population P0:

dP0

dt
¼ −

γp
ℏ
P0 þ

1

τ
Pe;

P0 þ Pe ¼ 1: ð8Þ

From the steady-state populations PSS
e ¼ γp=ðγp þ ℏ=τÞ we

obtain the current I ¼ PSS
e =τ and its typical value,

Ityp ¼ ehln Ii with hln Ii≡
�
ln

�
1

τ

γp
γp þ ℏ

τ

��
; ð9Þ

where h� � �i represents the average over disorder
configurations.
Another important figure of merit for the transport

is the average variance hσ2i of the excited states jαi, defined
as σ2 ¼ ½1=ðN − 1Þ�PN−1

α¼1 σ
2
α, where σ2α ≡ hαjx2jαi−

hαjxjαi2. This can be related to the stationary variance
obtained from the dynamical spreading of a wave packet

initially localized at the center of the chain; see SM [39].
Moreover, in the SM [39], we also considered another figure
of merit for transport, i.e., the integrated transmission.
Transport properties revealed by the three different figures
of merit are qualitatively the same.
Results for long-range systems.—In Figs. 2(a) and 2(b),

ℏItyp=Ω, see Eq. (9), and hσ2i are shown as a function of the
normalized disorder strength W=Ω for a chain with
N ¼ 104 sites. For small disorder both quantities decrease
with W exponentially, similarly to the Anderson model
(γ ¼ 0, blue curves). Counterintuitively, by increasing W,
the transport efficiency at first increases (DET regime),
until it reaches a plateau, where the dependence on the
disorder strength is extremely weak for several orders of
magnitude of W (DIT regime). The latter persists approx-
imately up to Wgap.
Since the variance hσ2i of the excited eigenstates,

Fig. 2(b), closely follows the behavior of the typical current
Ityp, Fig. 2(a), we can try to understand the different
transport regimes analyzing the average shape of the
eigenfunctions hjΨj2i of the excited states as a function
of the site basis k for different disorder strengths W.
Specifically, in the presence of long-range hopping

[19,32,33], in the gapped regime, the excited states have
a hybrid nature, with an exponentially localized peak,
identical to the Anderson model peak, and extended flat
tails, see Figs. 2(c) and 2(d), where the average shape of the
eigenfunctions hjΨj2i in the DET and DIT regimes are
shown. Note that, while in the DET regime the tails increase
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FIG. 2. (a) Normalized typical current ℏItyp=Ω versus the normalized static disorder W=Ω. (b) Average variance hσ2i versus the
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with the disorder strength W, they are independent of it in
the DIT regime. Hybrid shapes of the eigenfuctions
have been reported in other long-range interacting systems
[32,50].
An analytical expression for the disorder thresholds,

separating the different transport regimes, can be found as
follows. When the probability of the exponentially local-
ized peak at the chain edges, ≈ expð−N=2ξÞ, becomes
equal to the average probability in the tails (which scales as
1=N; see SM [39]), we have exp ð−N=2ξÞ ≈ 1=N.
Recalling that ξ ≈ 105.2ðΩ=WÞ2, we get the disorder
threshold W1:

W1 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
210.4 lnN

N

r
Ω: ð10Þ

For W > W1, the amplitude of the extended tails increases
with the disorder strength W, see Fig. 2(c), until the
eigenfunction tails become independent of W; see
Fig. 2(d). The disorder threshold W2 above which this
happens can be obtained by imposing that the probability
on the closest sites to the peak is equal to the probability in
the tails, expð−1=2ξÞ ¼ 1=N, so that

W2 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
210.4 lnN

p
Ω: ð11Þ

The validity of the predicted scaling of the different
transport regimes with N and γ is discussed below and
also in the SM [39].
One might think that these interesting transport regimes

originate from the coupling induced by disorder between
the unperturbed excited states and the extended

unperturbed ground state. Even if this coupling exists, it
is not the main reason for the DET and DIT regimes.
Indeed, a semianalytical perturbative expression for the
eigenstates in the gapped regime allows us to compute all
the relevant observables, see orange dots in Figs. 2(a)
and 2(b), completely neglecting the coupling mediated by
disorder between the unperturbed excited states and the
extended unperturbed ground state; see details in SM [39].
This indicates that the DET and DIT regimes have their
origin in the existence of an extended ground state which,
by imposing an orthogonality condition on all the excited
states, generates their extended tails.
Applications to molecular chains in optical cavities.—

Here we show that a chain of emitters in a cavity [2,3,34]
can be described in terms of an effective long-range
hopping model arising from the coupling of the emitters
with the cavity mode. This implies that our results are
relevant for a vast variety of other systems such as Rydberg
atoms, polar molecules, and molecular chains [3].
In the following we focus on the case in which the

emitters are molecules. This is particularly interesting
due to the large coupling (comparable with kBT with
T ¼ 300 K) between the molecules. Nevertheless, the same
discussion can be applied to any other kind of emitters. For
a molecular chain, at resonance with a cavity mode [3,34]
the Hamiltonian is given by

Hcav ¼ H0 þ g
XN
j¼1

ðjjihcj þ jcihjjÞ; ð12Þ

where H0 is defined in Eq. (2) and jci represents a single
excitation in the cavity mode (with no excitation in the
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FIG. 3. (a) Typical current Ityp, Eq. (9), versus the static disorderW. The results for a linear chain in an optical cavity Eq. (12) (crosses)
are compared with a long-range hopping model Eq. (1) (circles). Parameters for the linear chain in an optical cavity are N ¼ 104,
Ω ¼ 0.0124 eV, ℏωc ¼ 2 eV, μ ≈ 36 D, gc ¼ 3.188 eV, γp ¼ γd ¼ 0.0124 eV. The long-range hopping model has been obtained
using the same Ω value and setting γ ¼ 2gc=N in Eq. (1). The number of disorder configurations Nr is such that Nr × N ¼ 106.
(b) Normalized typical current ItypN2 versus the static disorder W for a linear chain in an optical cavity for different N values, as
indicated in the legend. Vertical dashed lines represent the values of W1 for different system sizes. Other parameters are the same
as in (a).
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chain). The coupling g of the emitters with the resonant
optical mode is given by [51]

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πμ2ℏωc

Vc

s
; ð13Þ

where μ is the molecular transition dipole, ωc is the cavity
mode frequency, and Vc is the cavity mode volume.
Since the coupling to the cavity mode is the same

for all molecules, it is possible to show [2,3] that only
the fully symmetric state jdi in the chain is coupled
to the cavity mode with a collective coupling strength
gc ¼

ffiffiffiffi
N

p
g. This coupling induces two polaritonic states,

jp�i ¼ 1=
ffiffiffi
2

p ðjdi � jciÞ, with an energy splitting of 2gc,
while the other N − 1 states with a bandwidth 4Ω, in the
absence of disorder, are decoupled from the cavity mode. In
the strong coupling regime, gc ≫ Ω, one of the polaritonic
states will become the ground state of the system and it
will be gapped from the excited states by an energy ≈gc.
By imposing

Nγeff=2 ¼ gc; ð14Þ

we determine the effective long-range coupling γeff which
would produce the same energy gap in the absence of
disorder; see SM [39] for details.
Since the coupling g is inversely proportional to Vc, see

Eq. (13), which typically scales like N, in the following we
consider a fixed collective coupling gc ¼

ffiffiffiffi
N

p
g ≈ 3.2 eV

[36,52], which corresponds to a cavity mode volume
Vc ¼ 104 nm3 [53] for a molecular chain of N ¼ 104 with
μ ≈ 36 D [9].
In Fig. 3(a) we plot the typical current Ityp versus the

disorder strength W for a chain of 104 molecules in an
optical cavity (crosses). Interestingly, this current is repro-
duced extremely well by the current obtained with the
effective long-range coupling Eq. (14) (circles) for
W < Wgap. For W > Wgap both polaritonic states mix with
all the other states and the differences between the long-
range model and the chain in the cavity model emerge. In
Fig. 3(b) the typical (normalized) current ItypN2 for the
cavity model, Eq. (12), is shown for different chain sizes N.
Note that Ityp ∝ 1=N2 for W > W1, instead of decreasing
exponentially with N, as for the localized regime in the
absence of long-range hopping.
Conclusions.—Controlling the detrimental effects of

disorder at the nanoscale is one of the main challenges
in achieving efficient energy transport. Here we have
shown that long-range hopping can lead to a disorder-
enhanced and a disorder-independent transport regime,
extending over several orders of magnitude of disorder
strength. Our results could be tested in several systems
where long-range hopping is present, such as molecular
aggregates [48], ion traps [14], and cold atomic clouds [15].
Remarkably, we have also shown that a system of emitters

coupled to a cavity mode can be mapped to a long-range
hopping system. This makes our results applicable to a vast
variety of other physical systems, such as molecular chains
in optical cavities, Rydberg atoms, and polar molecules [3];
see SM [39] for realistic parameters. Typically, for molecu-
lar chains in optical cavities Ω ≈ 0.03 eV, N ≈ 105, and
gc ≈ 1 eV [3], so that W1 ≈ 5 × 10−3 eV, W2 ≈ 1.5 eV,
and Wgap ≈ gc lnN ≈ 11.5 eV. Since natural disorder
typically ranges from 1 to 10 Ω, we can easily reach the
DET regime, with currents in the measurable range of tens
of nanoampere [9]. In other experimental setups, such as
ion traps, the spreading of an initially localized excitation in
the middle of the chain would provide the best way to
access both the DETand DIT regime. Indeed, the stationary
variance of the excitation, obtained from the spreading of a
localized wave packet, is well described by the average
variance of the eigenstates shown in Fig. 2(b); see SM [39]
for details. In perspective, it would be interesting to analyze
the effect of thermal noise on transport in long-range
systems.
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