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A fundamental result in modern quantum chaos theory is the Maldacena-Shenker-Stanford upper bound
on the growth of out-of-time-order correlators, whose infinite-temperature limit is related to the operator-
space entanglement entropy of the evolution operator. Here we show that, for one-dimensional quantum
cellular automata (QCA), there exists a lower bound on quantum chaos quantified by such entanglement
entropy. This lower bound is equal to twice the index of the QCA, which is a topological invariant that
measures the chirality of information flow, and holds for all the Rényi entropies, with its strongest Rényi-∞
version being tight. The rigorous bound rules out the possibility of any sublinear entanglement growth
behavior, showing in particular that many-body localization is forbidden for unitary evolutions displaying
nonzero index. Since the Rényi entropy is measurable, our findings have direct experimental relevance. Our
result is robust against exponential tails which naturally appear in quantum dynamics generated by local
Hamiltonians.
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Introduction.—The principles of causality and conserva-
tion of quantum information impose strong constraints on
the evolution of quantum many-body systems. In the
simplest setting, where space and time are discrete and
causality is “strict.” the latter can be described by quantum
cellular automata (QCA) [1–3], cf. Fig. 1(a) for an illus-
tration. Despite seemingly crude approximations for realistic
many-body dynamics, they provide useful models to study
different aspects of nonequilibrium physics. For instance,
local quantum circuits, a subclass of QCA, recently received
significant attention in connection to questions related to
quantum chaos and information scrambling [4–16].
In the past decade, much progress has been made in

characterizing QCA [17–21], with comprehensive and
elegant results obtained in one dimension (1D) [22–26].
In particular, it was first found in Ref. [22] that QCA are
characterized by a topological index “ind,” which measures
the amount of quantum information flowing through the
system. Besides its fundamental interest, this result turned
out to have practical implications, allowing, e.g., for
classifying 2D Floquet phases exhibiting bulk many-body
localization (MBL) [27–34].
In light of the intuitive information-flow picture, it is

natural to ask whether there exist strict relations between

the index and other aspects of the unitary dynamics, related,
for instance, to information scrambling as probed by out-
of-time-ordered correlators (OTOCs) [35–37]. The main
difficulty to answer this question lies perhaps in the original
definition of the index [22], which was given by the rank of
certain operator algebras, lacking an immediate physical
interpretation.
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FIG. 1. (a) A range-r 1D QCA U transforms an operator
supported on the jth site into one supported on ½j − r; jþ r�.
(b) Bipartition A⊔B and vectorization of U into the CJS jUi on a
doubled Hilbert space [cf. Eq. (4)]. The operator entanglement of
U with respect to A⊔B is defined as the entanglement entropy of
jUiwith respect to AA0⊔BB0, where A0, B0 are the ancillary qudits
associated with A, B, respectively. (c) AKLT-like range-1 QCA
with local Hilbert space Cpq (dashed rectangles) and ind ¼
lnðp=qÞ generated by disjoint unitaries u. Here the thin and thick
legs correspond to Cp and Cq, respectively. (d) Operator en-
tanglement Rényi entropy Sα of a single u in (c) with p ¼ 2 and
q ¼ 3 approaches jindj ¼ logð3=2Þ when α → ∞, implying the
saturation of Eq. (1) for S∞.
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In this work, we prove that there is an equivalent way to
express the index as the entanglement of the “vectorized"
evolution operator [cf. Fig. 1(b)], which is often called
operator-space entanglement entropy [38]. This quantity
can be formulated in terms of any Rényi entropy, is
computed locally, and closely reflects the intuitive inter-
pretation of the index based on quantum-information flow.
Inspired by this definition, we derive our main result,

Sα ≥ 2jindj; ð1Þ
where Sα is the Rényi entropy of order α of the evolution
operator, and where α ∈ ½0;∞�. This result establishes a
link between two seemingly unrelated topics, proving that
there exists a topological lower bound on the value of well-
studied dynamical quantities. In particular, based on the
known relation between S2 and the averaged OTOCs [39],
we will interpret this inequality as a lower bound on
quantum chaos. As an immediate application, Eq. (1)
allows us to establish rigorously that any sublinear entropy
growth behavior in 1D, including MBL, is not compatible
with a nonvanishing index. Thanks to measurability of the
Rényi entropy, our results should be experimentally
observable.
Index of 1D QCA.—We consider general range-rQCAU

defined on a periodic qudit chain with local Hilbert space
Cd and size N. As shown in Refs. [1,23], by grouping (or
“blocking”) at least r adjacent sites into one (such that the
coarse-grained QCA has size 2l ≤ N=r and range 1), we
can represent U as [cf. Fig. 2(a)]

U ¼
�
⊗
l

x¼1
v2x−1;2x

��
⊗
l

x¼1
u2x;2xþ1

�
; ð2Þ

where u2x;2xþ1∶Cd2x ⊗ Cd2xþ1 → Cd0
2x ⊗ Cd0

2xþ1 and
v2x−1;2x∶Cd0

2x−1 ⊗ Cd0
2x → Cd2x−1 ⊗ Cd2x are unitaries, with

input and output on two adjacent blocked sites, respec-
tively. Note that the local Hilbert space dimension d0x in the
“hidden” layer is generally not equal to dx, but they
must satisfy d0xd0xþ1 ¼ dxdxþ1 ∀ x ¼ 1; 2;…; 2l, implying
d02x=d2x ¼ d2x−1=d02x−1 is a constant independent of
x ¼ 1; 2;…; l. The index of U is defined as the logarithm
of this constant [22,23]:

ind≡ log
d2x
d02x

∈ logQþ; ð3Þ

which was proven to be stable against different ways of
blocking and under continuous deformations. In other
words, this index is a topological invariant of U.
Equivalent formulation of the index.—As a starting

point, we show that the index (3) can be expressed exactly
as an entanglement entropy difference between two
reduced states of the vectorized operator jUi, technically
known as the Choi-Jamiołkowski state (CJS) [40]:

jUi≡ ðU ⊗ IÞjIi; ð4Þ

where jIi≡ d−N=2ðPd
j¼1 jjjiÞ⊗N is the maximally

entangled state between two copies of the entire Hilbert
space and I≡ 1⊗N is the global identity acting on the
auxiliary copy. As shown in Fig. 2(b), if we pick up two
adjacent segments a and b with minfjaj; jbjg ≥ r (jaj is the
number of sites in a) [41], irrespective of their locations
[42], the index turns out to be

ind ¼ 1

2

�
Sαðρab0 Þ − Sαðρa0bÞ

�
; ð5Þ

where ρA ≡ TrĀ½jUihUj� (A ¼ ab0; a0b and Ā is the com-
plement of A) and SαðρÞ≡ ð1 − αÞ−1 log Tr½ρα� can be an
arbitrary Rényi entropy. Hereafter, we denote by a0 the
ancillary qudits associated with a, and analogously for
other regions. To show Eq. (5), we can take a specific
bilayer representation such that a and b are blocked into an
even and odd site, respectively. Then we consider the CJS
shown in Fig. 2(c) corresponding to ðvL;a ⊗ vb;RÞua;b, so
that its reduced state on Laa0bb0R coincides with that of
jUi. Importantly, here L and R are finite regions next to a, b
with jLj; jRj ≥ r, cf. Fig. 2(c). Since this is a pure state, we
have

SαðρL0a0bRÞ ¼ SαðρLab0R0 Þ ð6Þ
under the bipartition L0a0bR⊔Lab0R0. By directly con-
tracting the tensor, we obtain ρL0a0bR ¼ 1L0=d0L ⊗ ρa0bR and
ρLab0R0 ¼ ρLab0 ⊗ 1R0=d0R. Tracing out the auxiliary part of
jUi except for a0, we can consider ρa0bR as the reduced state
of ðU ⊗ 1a0 ÞðjIaa0 ihIaa0 j ⊗ daIā=dNÞðU† ⊗ 1a0 Þ (jIaa0 i is
the maximally entangled state between a and a0), which is

(a) (b)

(c) (d)

FIG. 2. (a) Representation of a QCA as a bilayer product of
nearest neighbor unitaries, with possibly different Hilbert-space
bipartition for their inputs and outputs. Here the thick and dotted
legs refer to virtual local Hilbert spaces at even and odd sites in
the hidden layer, respectively. (b) CJS jUi defined in Eq. (4) and
the entanglement bipartition related to the index. (c) Relevant CJS
used to derive the entropy expression (5) and the main result (1).
(d) Demonstration of Eq. (5) for a general representative QCA
with index logðp=qÞ consisting of the right and left translations of
local Hilbert spaces Cp (red circles) and Cq (blue circles),
respectively.
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supported on Laa0b. This implies ρa0bR ¼ ρa0b ⊗ 1R=dR.
Similarly, we can show ρLab0 ¼ 1L=dL ⊗ ρab0. Therefore,
ρL0a0bR and ρLab0R0 turn out to be supported on a0b and ab0,
respectively:

ρL0a0bR ¼ 1L0

d0L
⊗ ρa0b ⊗

1R
dR

;

ρLab0R0 ¼ 1L
dL

⊗ ρab0 ⊗
1R0

d0R
: ð7Þ

Substituting Eq. (7) into Eq. (6) and recalling the definition
of index in Eq. (3), we end up with Eq. (5).
It is instructive to test Eq. (5) for the QCA shown in

Fig. 2(d), which are the simplest representatives with
ind ¼ logðp=qÞ. This example provides a nice illustration
of the index as a measure of the chirality of quantum
information flow.
Before proceeding, we compare our result against differ-

ent previous reformulations of ind in the literature. First,
one can show [42] that Eq. (5) is equivalent to the “chiral
mutual information” introduced in Ref. [31], which is
defined in terms of some local ancillary degrees of freedom.
We stress, however, that the derivation presented there is
completely different from ours. In particular, we will see
that our formalism naturally allows us to make a connection
with different properties of the evolution operator. Second,
the Rényi-2 version of Eq. (5) is easily seen to coincide
with the original definition in Ref. [22] based on algebra
overlaps [42].
Proof for the entanglement lower bound.—Before prov-

ing Eq. (1) for general Rényi-α entropies, we observe that
one could show directly its validity for α ¼ 1, i.e., the case
of von Neumann entropy. Considering a segment with size
larger than 2r as the subsystem A, we can bipartite it into
two adjacent segments A ¼ a⊔b with minfjaj; jbjg ≥ r, so
that the entropy formula (5) is valid. Since the von
Neumann entropy satisfies the triangle inequality [44],
which follows from subadditivity, we have

Sðρaba0b0 Þ ≥ jSðρab0 Þ − Sðρa0bÞj ¼ 2jindj: ð8Þ

Using monotonicity in α of Sα, we immediately get that the
bound is satisfied for α ≤ 1. Unfortunately, this proof
cannot be extended to α > 1, since the Rényi entropies
do not satisfy subadditivity in general [45].
To prove the general case, we should make further use of

some nice properties of ρAA0 as a reduced state of a pure
CJS. To this end, let us return to the state shown in Fig. 2(c)
and take a different bipartition aba0b0⊔LRL0R0, obtaining

Sαðρaba0b0 Þ ¼ SαðρLRL0R0 Þ ¼ SαðρLL0 Þ þ SαðρRR0 Þ; ð9Þ

where we have used ρLRL0R0 ¼ ρLL0 ⊗ ρRR0 . This relation
follows from the fact that U is a QCA [21], and can be
understood from the vanishing correlation for two arbitrary

observables supported on these two regions [42]. While the
Rényi entropies do not satisfy subadditivity, they still
satisfy the weak subadditivity [46]:

SαðρLL0 Þ ≥ maxfSαðρLÞ − S0ðρL0 Þ; SαðρL0 Þ − S0ðρLÞg;
ð10Þ

where S0ðρÞ≡ logðrankρÞ is the max entropy. This
inequality follows from the nondecreasing property of
Rényi entropies upon arbitrary unital channels [46]. Note
that ρL and ρL0 are both maximally mixed and thus their
Rényi entropies coincide with the maximum possible
values log dL and logd0L, respectively. Therefore, we obtain
SαðρLL0 Þ ≥ jindj. Similarly, we have SαðρRR0 Þ ≥ jindj and
thus Sαðρaba0b0 Þ ≥ 2jindj, which completes the proof of the
main result.
Obviously, the bound is tight for all the Rényi entropies

for jindj ∈ logZþ since they are saturated by left or right
translations. What is less clear is whether the bound is tight
for general ind ∈ logQþ. At least for the Rényi-∞ entropy,
which gives the strongest version of Eq. (1) for a given
QCA, we can readily construct an example which saturates
the bound. To this end, we take u∶Cp ⊗ Cq → Cq ⊗ Cp

(with q > p) in Fig. 1(c) to be

u ¼
Xp
m;n¼1

jmnihmnj þ
Xp
m¼1

Xq
n¼pþ1

jnmihmnj: ð11Þ

This construction is reminiscent of the AKLT state [47], in
the sense that it is essentially an assembly of dis joint
unitaries but becomes correlated upon recombinations of
subsystems. See Fig. 1(d) for a demonstration for
ðp; qÞ ¼ ð2; 3Þ. On the other hand, since Sα > S∞ for
any finite α and S∞ ∈ logðQnZþÞ, the bound is not tight
for any noninteger index and α < ∞. Identifying a tight
bound for the most general case thus remains an open
problem.
One immediate and important implication of our main

result is that it rigorously rules out, for QCAwith nonzero
index, the possibility of MBL, which implies a logarithmic
growth of the entanglement of the evolution operator [48].
More generally, for nonzero index, any diffusive behavior
characterized by a sublinear growth of the Rényi entropies,
as recently demonstrated for random circuits with a
diffusive charge [49,50], is forbidden. This is because
the index is additive upon compositions [22] so the operator
entanglement entropy after t time steps is lower bounded
by [51]

SαðtÞ ≥ 2jindjt; ð12Þ
implying a linear growth. When specified to the case α ¼ 2,
this result also allows us to make a precise connection to
quantum chaos, due to the known relation between S2ðtÞ
and the average of infinite-temperature OTOCs [39]:
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hUtOAðU†ÞtOĀU
tOAðU†ÞtOĀiβ¼0 ¼ e−S2ðtÞ: ð13Þ

Here the lhs denotes the normalized sum over the elements
OA, OĀ of a complete basis of observables supported in A,
Ā, respectively [39]. When combined with Eq. (12), we
immediately obtain that a nonzero index implies exponen-
tial decay of the averaged OTOC. Once again, this is not
consistent with a MBL evolution, because in this case it has
been shown that OTOCs exhibit a power-law decay
[52,53]. Finally, we remark that there is no universal lower
bound for the (state) entanglement growth of an initial
product state evolved by a QCA, as it can be seen in the
simple case of translations.
Experimental relevance.—One important motivation to

consider Rényi entropies is their accessibility in state-of-
the-art quantum simulation experiments [54–57]. Thanks to
the entropy reformulation (5) of the index, all the quantities
in our main result (1) are in principle measurable.
Let us explain the protocol to measure Rényi-n entropies

with n ∈ N. We can straightforwardly generalize the
strategies in Refs. [58–60] for quantum states to operators
by vectorizing the latter into their CJSs. To measure Sn of a
bipartite state ρAB ¼ jΨABihΨABj, the essential idea is to
make use of Tr½ρnA� ¼ Tr½TAρ

⊗n
AB �, where TA denotes the

translation operator of subsystems A, which can be imple-
mented by a sequence of SWAP unitaries [cf. Fig. 3(a)]. The
value of Sn can then be extracted by performing an
interferometric measurement on an ancilla qubit after a
sequence of controlled-SWAP gates as shown in Fig. 3(b)
[58]. For our specific purpose of measuring the operator
entanglement and the index, we should choose A to be
aa0bb0, ab0, and a0b, where a and b are adjacent segments
whose sizes can be as small as the range of the QCA. In a
proof-of-principle experiment, it would be good enough to
construct a translation of qubits with N ¼ 4 and r ¼ 1,
which may be implemented by 3 SWAP gates, so that we can
set jaj ¼ 1 and jbj ¼ 1, and measure the Rényi-2 entropy

so that we only need a single controlled-SWAP gate acting
on 2 (index) or 4 (operator entanglement) pairs of qubits.
This minimal setup should be accessible by many current
experimental platforms, such as trapped ions [61], super-
conducting qubits [62], and Rydberg-atom arrays [63].
Note that there is also a more sophisticated method of
measuring Rényi-n entropies based on random quenches
[64,65] which has also been experimentally realized [66]
and should also be applicable to measuring operator
entanglement and the index. As a final remark, we mention
that one can further reduce the experimental cost in state
preparation by taking advantage of the idea in Ref. [31].
That is, we may only introduce a few ancillas covering the
subsystem, while obtaining the same measurement results.
Stability against exponential tails.—Trivial (nontrivial)

QCA have been used to approximate the (edge) dynamics
of 1D Floquet unitaries [67] (2D chiral Floquet MBL
phases [28]) governed by time-periodic local Hamiltonians
satisfying the Lieb-Robinson bound [68–70]. The QCA
approximation should thus be precise up to some expo-
nential tails outside the light cone. This motivates us to
analyze how our main result (1) is modified by such small
deviation from QCA.
To avoid the problem of defining the index for quasilocal

unitaries with exponential tails, which remains an open
problem [71], we restrict ourselves to consider specific
quasilocal unitaries that are range-r QCA followed by
finite-time evolutions of local Hamiltoniains, i.e.,

U ¼ T̂e−i
R

T

0
dtHðtÞUQCA; ð14Þ

where T̂ denotes the time ordering, HðtÞ ¼ P
N
j¼1 hjðtÞ

with hjðtÞ supported locally near j and h≡maxj;tkhjðtÞk
is finite. This setup has been used in several previous
studies [28,31]. Setting the rhs of Eq. (1) as the index of
UQCA, we would like to know whether the inequality can be
violated and, if yes, to what extent.
We can give an explicit example where the inequality is

violated by choosing UQCA to be the right translation T
and HðtÞ ¼ hS½jt;jtþ1�, where jt ¼ btjAj=Tc and A ¼
½0; jAj − 1� is the subsystem of interest, while S½j;k� is the
SWAP operator between sites j and k. This exactly
solvable construction is inspired by the fact that AA0 and
ĀĀ0 can be exactly disentangled for T ¼ πjAj=ð2hÞ, so one
may expect the Hamiltonian evolution is still a disentangler
for a finite T ≪ jAj. Indeed, we find that Eq. (1) is
violated for all α > 0, with the largest violation
being 2ind − S∞ ¼ log½1þ ðd2 − 1Þϵ� > 0, where ϵ ¼
sin2jAjðhT=jAjÞ scales as e−OðjAj log jAjÞ for large jAj, which
also determines the scaling behavior of the violation.
In fact, the above example serves as a qualitatively worst

case. That is, we can prove that for any local-Hamiltonian
evolution, the order of the violation of Eq. (1) can never be
larger than e−OðjAj log jAjÞ [42], and thus vanishes super-
exponentially in the thermodynamic limit. The proof

(a) (b)

FIG. 3. (a) Graphic representation of Tr½ρnA� ¼ Tr½TAρ
⊗n
AB � with

TA ¼ S½n−1;n�
A …S½2;3�

A S½1;2�
A , where S½j;k�

A is a SWAP over the jth and
kth copies of subsystem A. (b) Experimental setup for measuring
the operator entanglement Rényi-n entropy as well as the index.
Here SA’s are controlled by the ancilla qubit,H ¼ ðX þ ZÞ= ffiffiffi

2
p

is
the Hadamard gate, jIi’s are global maximally entangled states
which become jUi upon the action of U, and A is a subsystem of
interest, whose choice depends on which quantity (index or
operator entanglement) we would like to measure.
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involves a technique in Ref. [67] for approximating
Hamiltonian dynamics by quantum circuits and a careful
optimization of the Lieb-Robinson bound [72,73]. This
rigorous derivation implies the stability of our main result
and significantly widens its range of applicability. For
example, we can rule out any sublinear entanglement-
growth behavior for the evolution operator e−iHTT (thus
forbidding MBL features), even if the local Hamiltonian H
is in the deep MBL phase [28].
Summary and outlook.—We have derived a convenient

local expression for the index of 1D QCA, and proved that
any Rényi-α entropy of the evolution operator is lower
bounded by twice the index. This rigorous bound rules out
any sublinear entanglement-growth behavior in nontrivial
QCA and might be interpreted as a lower bound on
quantum chaos, as opposed to the Maldacena-Shenker-
Stanford upper bound [74]. Since the Rényi entropy is
accessible in cutting-edge atomic, molecular and optical
experiments, our results should be experimentally observ-
able. We have also discussed the validity of our bound
against deviations from QCA by exponential tails.
One immediate question for future work is how to

tighten the bound for a general rational index and
Rényi-α entropy with α < ∞. Another natural direction
to explore is the generalization to the symmetry-protected
case [25]. Here we expect that a nonzero symmetry-
protected index will give rise to a linear growth of the
entropy, even for ind ¼ 0. Finally, it may also be interesting
to consider generalizations to quantum channels with
suitable locality properties [21].
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Note added.—Recently, a related work by Ranard et al.
appeared [75], which also reported the entropy reformu-
lation of the index. However, their main focus was to derive
an index theory for quasilocal unitaries rather than explor-
ing its connections with other dynamical properties. On the
technical level, Ref. [75] only uses the von Neumann
entropy for infinite (or finite open) chains.
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[9] C. Sünderhauf, D. Pérez-García, D. A. Huse, N. Schuch,
and J. I. Cirac, Phys. Rev. B 98, 134204 (2018).

[10] A. Chan, A. De Luca, and J. T. Chalker, Phys. Rev. Lett.
121, 060601 (2018).

[11] A. Chan, A. De Luca, and J. T. Chalker, Phys. Rev. X 8,
041019 (2018).

[12] A. J. Friedman, A. Chan, A. De Luca, and J. T. Chalker,
Phys. Rev. Lett. 123, 210603 (2019).

[13] B. Bertini, P. Kos, and T. Prosen, Phys. Rev. Lett. 123,
210601 (2019).

[14] B. Bertini and L. Piroli, Phys. Rev. B 102, 064305 (2020).
[15] S. Xu and B. Swingle, Nat. Phys. 16, 199 (2020).
[16] P. W. Claeys and A. Lamacraft, Phys. Rev. Research 2,

033032 (2020).
[17] P. Arrighi, V. Nesme, and R. Werner, J. Comput. Syst. Sci.

77, 372 (2011).
[18] J. Haah, L. Fidkowski, andM. B. Hastings, arXiv:1812.01625.
[19] J. Haah, arXiv:1907.02075.
[20] M. Freedman and M. B. Hastings, Commun. Math. Phys.

376, 1171 (2020).
[21] L. Piroli and J. I. Cirac, Phys. Rev. Lett. 125, 190402

(2020).
[22] D. Gross, V. Nesme, H. Vogts, and R. F. Werner, Commun.

Math. Phys. 310, 419 (2012).
[23] J. I. Cirac, D. Perez-Garcia, N. Schuch, and F. Verstraete,

J. Stat. Mech. (2017) 083105.
[24] M. B. Şahinoğlu, S. K. Shukla, F. Bi, and X. Chen, Phys.

Rev. B 98, 245122 (2018).
[25] Z. Gong, C. Sünderhauf, N. Schuch, and J. I. Cirac, Phys.

Rev. Lett. 124, 100402 (2020).
[26] L. Piroli, A. Turzillo, S. K. Shukla, and J. I. Cirac, J. Stat.

Mech. (2021) 013107.
[27] D. V. Else and C. Nayak, Phys. Rev. B 93, 201103(R)

(2016).
[28] H. C. Po, L. Fidkowski, T. Morimoto, A. C. Potter, and A.

Vishwanath, Phys. Rev. X 6, 041070 (2016).
[29] A. C. Potter and T. Morimoto, Phys. Rev. B 95, 155126

(2017).
[30] F. Harper and R. Roy, Phys. Rev. Lett. 118, 115301 (2017).
[31] B. R. Duschatko, P. T. Dumitrescu, and A. C. Potter, Phys.

Rev. B 98, 054309 (2018).
[32] L. Fidkowski, H. C. Po, A. C. Potter, and A. Vishwanath,

Phys. Rev. B 99, 085115 (2019).
[33] C. Zhang and M. Levin, Phys. Rev. B 103, 064302 (2021).
[34] Y. Liu, H. Shapourian, P. Glorioso, and S. Ryu,

arXiv:2012.08384.
[35] S. H. Shenker and D. Stanford, J. High Energy Phys. 12

(2014) 046.
[36] S. H. Shenker and D. Stanford, J. High Energy Phys. 03

(2014) 067.
[37] D. A. Roberts, D. Stanford, and L. Susskind, J. High Energy

Phys. 03 (2015) 051.

PHYSICAL REVIEW LETTERS 126, 160601 (2021)

160601-5

https://arXiv.org/abs/quant-ph/0405174
https://doi.org/10.22331/q-2020-11-30-368
https://doi.org/10.1007/s11047-019-09762-6
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevB.98.134204
https://doi.org/10.1103/PhysRevLett.121.060601
https://doi.org/10.1103/PhysRevLett.121.060601
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevLett.123.210603
https://doi.org/10.1103/PhysRevLett.123.210601
https://doi.org/10.1103/PhysRevLett.123.210601
https://doi.org/10.1103/PhysRevB.102.064305
https://doi.org/10.1038/s41567-019-0712-4
https://doi.org/10.1103/PhysRevResearch.2.033032
https://doi.org/10.1103/PhysRevResearch.2.033032
https://doi.org/10.1016/j.jcss.2010.05.004
https://doi.org/10.1016/j.jcss.2010.05.004
https://arXiv.org/abs/1812.01625
https://arXiv.org/abs/1907.02075
https://doi.org/10.1007/s00220-020-03735-y
https://doi.org/10.1007/s00220-020-03735-y
https://doi.org/10.1103/PhysRevLett.125.190402
https://doi.org/10.1103/PhysRevLett.125.190402
https://doi.org/10.1007/s00220-012-1423-1
https://doi.org/10.1007/s00220-012-1423-1
https://doi.org/10.1088/1742-5468/aa7e55
https://doi.org/10.1103/PhysRevB.98.245122
https://doi.org/10.1103/PhysRevB.98.245122
https://doi.org/10.1103/PhysRevLett.124.100402
https://doi.org/10.1103/PhysRevLett.124.100402
https://doi.org/10.1088/1742-5468/abd30f
https://doi.org/10.1088/1742-5468/abd30f
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevX.6.041070
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevLett.118.115301
https://doi.org/10.1103/PhysRevB.98.054309
https://doi.org/10.1103/PhysRevB.98.054309
https://doi.org/10.1103/PhysRevB.99.085115
https://doi.org/10.1103/PhysRevB.103.064302
https://arXiv.org/abs/2012.08384
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP03(2015)051


[38] P. Zanardi, Phys. Rev. A 63, 040304(R) (2001).
[39] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, J. High

Energy Phys. 02 (2016) 004.
[40] M.-D. Choi, Linear Algebra Appl. 10, 285 (1975).
[41] To be rigorous, we should also require jaj þ jbj ≤ N − 2r,

although typically jaj; jbj ∼OðrÞ ≪ N is relevant to both
practical numerical calculations and experimental measure-
ments. The same constraint appears for the validity of
Eq. (1) and explains why the minimal experimental setup
is N ¼ 4.

[42] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.126.160601, which in-
cludes Ref. [43], for details.

[43] P. Hayden, R. Jozsa, D. Petz, and A. Winter, Commun.
Math. Phys. 246, 359 (2004).

[44] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Information (Cambridge University Press, Cambridge,
England, 2010).

[45] N. Linden, M. Mosonyi, and A. Winter, Proc. R. Soc. A 469,
20120737 (2013).

[46] W. van Dam and P. Hayden, arXiv:quant-ph/0204093.
[47] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev.

Lett. 59, 799 (1987).
[48] T. Zhou and D. J. Luitz, Phys. Rev. B 95, 094206 (2017).
[49] Y. Huang, IOP SciNotes 1, 035205 (2020).
[50] T. Rakovszky, F. Pollmann, and C.W. von Keyserlingk,

Phys. Rev. Lett. 122, 250602 (2019).
[51] To avoid undesired finite-size saturation, we may choose the

subsystem size to be no smaller than 2rt for a range-r QCA
at time t; alternatively, given subsystem size jAj, we should
focus on a time interval up to jAj=ð2rÞ.

[52] R. Fan, P. Zhang, H. Shen, and H. Zhai, Sci. Bull. 62, 707
(2017).

[53] Y. Huang, Y.-L. Zhang, and X. Chen, Ann. Phys.
(Amsterdam) 529, 1600318 (2017).

[54] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M.
Rispoli, and M. Greiner, Nature (London) 528, 77 (2015).

[55] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R.
Schittko, P. M. Preiss, and M. Greiner, Science 353, 794
(2016).

[56] N. M. Linke, S. Johri, C. Figgatt, K. A. Landsman, A. Y.
Matsuura, and C. Monroe, Phys. Rev. A 98, 052334 (2018).

[57] A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M.
Kaufman, S. Choi, V. Khemani, J. Léonard, and M. Greiner,
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