
 

Experimental Evidence of Chiral Symmetry Breaking in Kekulé-Ordered Graphene
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The low-energy excitations of graphene are relativistic massless Dirac fermions with opposite chiralities at
valleys K and K0. Breaking the chiral symmetry could lead to gap opening in analogy to dynamical mass
generation in particle physics. Here we report direct experimental evidences of chiral symmetry breaking
(CSB) from both microscopic and spectroscopic measurements in a Li-intercalated graphene. The CSB is
evidenced by gap opening at the Dirac point, Kekulé-O type modulation, and chirality mixing near the gap
edge. Our work opens up opportunities for investigating CSB related physics in a Kekulé-ordered graphene.
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Chirality ĥ is a fundamental property for relativistic
massless Dirac fermions, which is defined by the projection
of spin σ onto momentum p̂, namely, ĥ ¼ 1

2
σ · p̂=jp̂j. Chiral

symmetry breaking (CSB), namely, coupling of Dirac
fermions with opposite chiralities, leads to dynamical mass
generation for elementary particles [1], which lays a corner-
stone for the Standard Model in particle physics. The low-
energy excitations of graphene are massless Dirac fermions
[2,3] with the electron spin replaced by the pseudospin, and
therefore graphene provides a condensed matter physics
analog for investigating CSB and mass generation indicated
by band gap opening [4–7]. In addition to gap opening, a
series of intriguing phenomena have been proposed with
CSB, such as electron fractionalization [8] and topological
effects in the electron and phonon spectra [9,10].
Experimental realization and unambiguous observation of
CSB in graphene are therefore highly desirable.
In order to realize CSB, a superlattice period of

ð ffiffiffi
3

p
×

ffiffiffi
3

p ÞR30° is required to couple Dirac cones from
K and K0 valleys, and such intervalley coupling could lead
to replica Dirac cones at the Brillouin zone center and gap
opening as schematically illustrated in Fig. 1(a). Such
superlattice period is inherent in the Kekulé distortion with
modulated bond structure as indicated by red and black
bonds in Fig. 1(b). Experimentally, Kekulé distortion can
be induced by a strong magnetic field [11–13], which
however also breaks the time reversal symmetry and turns
the conical dispersion into Landau levels. Introducing

dilute adatoms or defects [6,14–16] or an external super-
lattice potential [17–19] provides an attractive pathway for
realizing CSB while still preserving the conical dispersion.
Along this path, important progress has been made in
graphene grown on Cu substrate, where Kekulé-Y order
with “Y”-shaped bond modulation as shown in Fig. 1(c)
has been revealed by scanning tunneling microscopy
(STM) [14]. However, there is no evidence of gap opening,
and recent theoretical calculation suggests that such
Kekulé-Y ordered graphene would remain gapless, while
the Kekulé-O order, where modulated bonds form an “O”-
shape pattern as shown in Fig. 1(d), is gapped [15].
Superlattice period of ð ffiffiffi

3
p

×
ffiffiffi
3

p ÞR30° has also been
reported in Li- or Ca-intercalated graphene [20–26] or
graphite [27,28], making them potential candidates for
realizing CSB. However, experimental evidences such as
CSB induced gap opening, specific type of Kekulé order,
and chirality mixing near the gap edge, which are crucial
for establishing the CSB, are still missing.
Here by combining angle-resolved photoemission

spectroscopy (ARPES) and STMmeasurements, we provide
direct experimental evidences for CSB in a Li-intercalated
graphene from both electron spectroscopic and microscopic
measurements. The CSB is confirmed by CSB induced gap
opening in the Dirac cone, Kekulé-O type texture in the
surface topography, and chirality mixing near the gap edge.
The Kekulé order is introduced by intercalating Li [20]

to monolayer graphene on SiC substrate (see Fig. S1 and
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the Supplemental Material for more details [29]). The
intercalation releases the bonding between the buffer layer
[37] and the SiC substrate, which transforms the buffer
layer into a new graphene layer [20,25] and results in two
graphene layers in the AA stacking [26], as schematically
illustrated in Fig. 2(a). We note that intercalation of the
buffer layer does not lead to Kekulé order [25,35], and a

two graphene layer structure, as shown in Fig. 2(a), has the
minimum thickness required to stabilize the Kekulé order.
After intercalation, the Fermi surface map in Fig. 2(b)
shows two trigonal pockets at each Brillouin zone corner, a
hexagonal star-shaped pocket at the Γ point, and arcs near
the M� point. The small and large triangular pockets
originate from the top and bottom graphene layers,

FIG. 2. (a) A schematic drawing of Li-intercalated double layer graphene on SiC. (b) Experimental Fermi surface map of the Kekulé-
ordered graphene measured using helium lamp source at 21.2 eV. The intensity inside the dashed box around Γ is enhanced for better
visualization. (c) A schematic Fermi surface map of the Kekulé-ordered graphene. (d) Dispersion image of the folded Dirac cones
measured along the M-Γ-M direction [marked by gray line in (c)]. (e) EDCs for data shown in (d). (f) Dispersion image of Dirac cones
through the K point and perpendicular to K-M direction [marked by gray line in (c)]. (g) EDCs for data shown in (f). (h) A schematic
summary of two gapped Dirac cones as observed experimentally.
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FIG. 1. (a) A schematic for CSB. Straight blue and yellow arrows point to the pseudospin directions. (b) A Kekulé-ordered graphene
with different bond strengths (represented by black and red colors) and nearest-neighbor hopping parameters γ and γ0. The unit cells of
pristine and Kekulé-ordered graphene are marked by gray and blue parallelograms. (c) Kekulé-Y bond texture. (d) Kekulé-O bond
texture.
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respectively, with carrier concentrations of 1.3 × 1014 cm−2

and 4.3 × 1014 cm−2 calculated from the size of the Fermi
pockets using the Luttinger theorem [38]. The star-shaped
pocket at Γ is formed by the superposition of the folded
inner triangular pockets from K and K0 by the reciprocal
Kekulé superlattice vector [see schematic drawing in
Fig. 2(c)]. Replicas of the larger triangular pockets folded
from K and K0 to Γ, and K to K0 or vice versa are
also observed near the M� point [designated by gray
arrows in Fig. 2(b)]. The existence of folded Dirac cones
by ð ffiffiffi

3
p

×
ffiffiffi
3

p ÞR30° superlattice modulation [21,22,28,39]
is not sufficient for generating a mass gap, and further
experimental evidences are needed to confirm the CSB
with a gap opening, which is the main focus of this work.
An important evidence is the gap opening at the Dirac

point, which is revealed by ARPES dispersions measured
through both Γ and K points shown in Fig. 2, and more data
around these points are shown in Figs. S2 and S3 [29].
A gap of 380� 10 meV is clearly identified for the upper
Dirac cone (inner pocket) from the dispersion image shown
in Fig. 2(d) as well as energy distribution curves (EDCs)
shown in Fig. 2(e). Such gap value corresponds to an
effective mass of m� ¼ 0.033 me, where me is the free
electron mass. The gap opening is also observed in the
dispersion image measured along an equivalent cut through
the K point [Fig. 2(f)]. Here, not only the upper Dirac cone

but also the lower Dirac cone with a larger pocket is clearly
resolved. The upper Dirac cone shows a gap value consistent
with Fig. 2(d) with the Dirac point at −1.27 eV [broken line
in Fig. 2(e)], and the lower Dirac cone shows a gap of
410� 50 meV (m� ¼ 0.036 me) with the Dirac point at
−1.82 eV [broken line in Fig. 2(g)]. Our ARPES data show
that these two Dirac cones are both gapped and shifted in
energy, as schematically summarized in Fig. 2(h). A gap was
observed previously, yet its origin was elusive [21]. Here
first-principles calculations are performed to support the
CSB origin of the gap. The calculated band dispersion
[Figs. S5(a),(d) [29] ] with the most stable Li configuration
(Fig. S4 [29]) is in agreement with the experimental obser-
vation.Moreover, a comparison of calculated dispersionswith
either the bottom or top Li layer removed (Fig. S5 [29]) shows
that the intercalated Li layer between the two graphene layers
contributes dominantly to the gap opening. Because this Li
layer is also critical for the formation of the ð ffiffiffi

3
p

×
ffiffiffi
3

p ÞR30°
Kekulé order, our comparison indicates a close correlation
between the gap opening and the Kekulé order.
As noted above, recent theoretical calculation shows that

only a specific type ofKekulé order can generate a gap opening
[15], and therefore it is important to identify the speci-
fic type of Kekulé order. Here we directly probe the spatially
resolved electronic properties by performingSTM topographic
measurements at different bias voltages. Away from the

FIG. 3. (a)–(e) STM topographic images at different bias voltages. The size of all images is 2.5 nm × 2.5 nm, and the tunneling
current is 0.5 nA (a) and 4.1 nA (b)–(e). The inset in (c) is a two-dimensional fast Fourier transformation image of data in (c). (f) A
schematic summary of Kekulé-O type modulation, which is observed only near the gap edge.
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Dirac point energy, for example at −0.1 eV [Fig. 3(a)], the
STM topography shows a honeycomb structure that is typical
of graphene, while at energies near the gap regions of the two
Dirac cones [Figs. 3(b)–(e)], the STM topography clearly
demonstrates strongly modified topography, with a periodic
arrangement of expanded hexagons (labeled by thicker blue
bonds) alternating with highly distorted hexagons compatible
with the Kekulé-O type pattern. Such a Kekulé-O order is
critical for inducing a CSB gap [15]. Compared to other
decorated graphene [14,22,23,25] where ð ffiffiffi

3
p

×
ffiffiffi
3

p ÞR30°
Kekulé order is also observed in the fast Fourier transformation
image [inset of Fig. 3(c)], our work is the first to demonstrate
Kekulé-O type modulation and to show that it exists only near
thegap edge of theDirac cone, as schematically summarized in
Fig. 3(f), by combining the advantages of both STM and
ARPES measurements. The fact that the Kekulé-O pattern is

observedonlynear thegap edge indicates that it is amodulation
of the electronic states rather than a simple modulation of the
lattice, which is energy independent. This suggests that
although the CSB has a somewhat different origin (induced
byanexternal superlattice potential imposedby the intercalated
Li atoms rather than a spontaneous Coulomb interaction in
quantum electrodynamics [40]), the results of the CSB,
including CSB induced gap opening andmodulated electronic
states near the gap edge, remain the same.
We take one step further by pursuing the evolution of the

chirality mixing near the gap edge through polarization-
dependent ARPES measurements. Figures 4(a)–(d) show
Fermi surface maps measured using four different light
polarizations, where the zigzag (Γ-K) direction is in the
scattering plane [see experimental geometry in Fig. 4(j)].
The pseudospin selection rules can be derived following

FIG. 4. (a)–(d) Experimental Fermi surface maps measured around the Γ point using an 11 eV laser source with four different light
polarizations. (e),(f) Extracted σx and σy from data in (a)–(d). (g) Extracted chirality maps at EF. (h) Extracted chirality maps at EF, −1.0
and −2.4 eV. Red, blue, and black curves are guides for the pockets, and red and blue arrows indicate the pseudospin directions.
(i) Chirality-resolved dispersion image. The schematic cartoon on the left indicates the momentum direction where the dispersion is
measured. Black arrows point to chirality mixing near the gap edge. (j) Experimental geometry for the polarization-dependent ARPES
measurements.
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previous work [41], and similar measurements have been
applied to reveal the Berry phase of graphene [41–43],
which is the accumulated phase of the pseudospin around a
closed loop. Here we extend the analysis to further extract
energy- and momentum-resolved pseudospin and chirality
in our Kekulé-ordered graphene (see Supplemental
Material for more details on the analysis method [29]).
In particular, the x and y components of the pseudospin for
each point in the Dirac cone can be extracted from the linear
dichroism (LD) and circular dichroism (CD) ARPES by

ILD ¼ Ip − Is
Ip þ Is

¼
�
cos θ ¼ σx ðforK valleyÞ
cos θ ¼ σ�x ðforK0 valleyÞ

ICD ¼ ILCP − IRCP
ILCP þ IRCP

¼
�
sin θ ¼ σy ðforK valleyÞ
− sin θ ¼ σ�y ðforK0 valleyÞ

where Ip, Is, ILCP, and IRCP correspond to ARPES intensity
with two linear and two circular light polarizations. Note
that K and K0 are related by the time reversal symmetry,
ĤK0 ¼ −vσ� · p̂, and the pseudospin at K0 is defined as
σ� ¼ ðσx;−σyÞ [2].
The extracted momentum-resolved σx and σy maps from

Figs. 4(a)–(d) are shown in Figs. 4(e),(f). By further taking
the projection ĥ ¼ 1

2
σ · p̂=jp̂j, opposite chiralities (repre-

sented by red and blue colors) are observed for folded
Dirac cones from K and K0 at EF [Fig. 4(g)], endorsing the
validity of this analysis method. Moreover, chirality maps
measured at different energies [Fig. 4(h)] and chirality-
resolved dispersion image along the Γ-K direction [Fig. 4(i)]
show that although a strong chirality contrast is observed
away from the Dirac point (e.g., at EF and −2.4 eV), the
chirality contrast becomes negligible in regions where folded
Dirac cones from K and K0 (blue and red curves) overlap
[designated by black arrows in Fig. 4(i)], indicating that there
is no well-defined chirality near the gap edge of the upper
Dirac cone. We note that weak yet detectable chirality
contrasts are observed at −1.0 eV on both sides of the
upper Dirac cone, which are contributed by the lower Dirac
cone away from the Dirac point (see Fig. S6 [29]). Analysis
of the energy-dependent chirality for the upper Dirac cone
is shown in Fig. S7 [29], which shows that the chirality
contrast decreases gradually when moving toward the Dirac
point and becomes negligible near the gap edge. Such energy
dependent chirality made available by polarization-
dependent ARPES measurements confirms the chirality
mixing near the gap edge, providing another important
experimental evidence for CSB.
The observation of replica Dirac cones with CSB

induced gap opening, Kekulé-O patterned topography,
and chirality mixing near the gap edge together provides
definitive experimental evidences for CSB in a condensed
matter physics system, in analogy to the mass generation in
particle physics. Moreover, the experimental realization
of CSB in the Kekulé-ordered graphene provides new

opportunities for exploring CSB related physics, such as
electron fractionalization [8] and topological effects [9,10].
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