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The compression of soft elastic matter and biological tissue can lead to creasing, an instability where a
surface folds sharply into periodic self-contacts. Intriguingly, the unfolding of the surface upon releasing
the strain is usually not perfect: small scars remain that serve as nuclei for creases during repeated
compressions. Here we present creasing experiments with sticky polymer surfaces, using confocal
microscopy, which resolve the contact line region where folding and unfolding occurs. It is found that
surface tension induces a second fold, at the edge of the self-contact, which leads to a singular elastic stress
and self-similar crease morphologies. However, these profiles exhibit an intrinsic folding-unfolding
asymmetry that is caused by contact line pinning, in a way that resembles wetting of liquids on imperfect
solids. Contact line pinning is therefore a key element of creasing: it inhibits complete unfolding and gives
soft surfaces a folding memory.
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Creases are ubiquitous to nature and can readily be
observed by closing ones’ hand or bending ones’ arm: Soft
tissue responds to compression by folding into deep valleys
of self-contacting skin [1–3]. The morphology of mamma-
lian brains [4–7] or tumors [8] is dominated by creases that
emerge from tissue growth under constraint conditions.
Similarly, polymer coatings in technological applications
may suffer from creasing due to swelling [9–13], but also
compressed elastomers [1,14–16] and viscoelastic liquids
[15] display this instability.
The canonical creasing behavior can be realized by

uniaxially compressing a slab of a soft material [Fig. 1(a)].
Sharp creases form via a subcritical bifurcation after a
reaching a critical strain ϵc [1,2]. When subsequently
releasing the strain to below ϵc, the length of the crease
is only gradually reduced. This implies bistability since
either creased or homogeneous states can be found,
depending on the deformation history [17–19]. Recent
studies clarified the onset of creasing [2,20,21], invoking
surface tension [17,18,22] or the presence of a skin [23] to
explain the observed bistability.
Interestingly, a microscopic residual crease typically

remains even after the strain is fully released to ϵ ¼ 0

[Fig. 1(a)]. This small feature, referred to as a “scar,” is of
great significance, since it serves as a nucleus for creases
when repeating the compression [11,17,18]. As such, these
scars endow soft materials with mechanical memory
[11,17], offering a potential of dynamic programmability
of surface folds. Despite their importance, scars have
remained somewhat enigmatic. It was found that scars
are not due to material failure, and their persistence was
argued to originate from adhesion [16–18]. However, it is
not clear whether adhesion and surface tension can actually
lead to a reduction of surface energy compared to the flat,
scarless state. Recent work focused on the consequences
of surface tension to the onset bifurcation of creasing [22],
but it is not known how surface tension affects folding and
unfolding at the microscale.
In this Letter we resolve the micro- and macromorphol-

ogy of adhesive creases by confocal microscopy [Fig. 1(b)],
and identify the role of surface tension (γ), inside the self-
contact. It is found that surface tension induces a second
fold at the edge of the self contact, turning the surface into a
T-shaped profile [Fig. 1(b), bottom right]. This involves a
change of the contact angle θ from 180° for γ ∼ 0 to 90° for
γ > 0. Further, we show that folding and unfolding the
crease are, at the microscale, intrinsically asymmetric
processes. The unfolding is inhibited, and ultimately
prevented, by contact line pinning. This pinning-induced
hysteresis implies a new type of bistability, even far above
the onset of creasing, and offers a natural explanation for
the formation of scars.
Experimental.—A layer of a soft polymer gel (Dow

Corning CY52-276, components A∶B mixed 1∶1 or 1.4∶1
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to obtain different shear moduli, thickness H0 ∼ 1.0 to
1.3 mm) was prepared on top of a stiff, uniaxially
prestretched PVS rubber sheet (Zhermack Elite Double
20). To compress the gel layer, the prestretch of the support
was slowly released by a micrometer [15,16]. Fluorescent
particles (Invitrogen FluoSpheres, 100 nm diameter) were
added to the bottom and top surface of the gel. Gel
thickness and top surface morphology were measured with
an upright confocal microscope (Leica TCS-SP2) with
10× and 40× magnification. To image the self-contact
through the free surface with minimal optical artifacts, we
used index-matched immersion liquids. The immersion
also offers a way to tune the gel surface tension: We
measured γ ∼ 0 for the immersion with a long-chain
silicone oil (Wacker, 12.5 Pa s) and γ ∼ 20 mN=m for a
water-glycerol mixture [16]. The relative importance of
surface tension γ to shear modulus G is quantified by the
elastocapillary length, l ¼ γ=G. Importantly, these liquids
caused virtually no swelling of the gel, as was tested by
prolonged immersion. The typical compression protocol of
an experiment is sketched in Fig. 1(a). First we increased

the strain ϵ in small steps, recording after each step and a
prolonged waiting time (≳15 min, much larger than the
material relaxation time ≲0.5 s) the free-surface morphol-
ogy by an xyz scan. After creases had formed we com-
pressed a bit further, then repeated this procedure while
decreasing ϵ again. Further experimental details can be
found in the Supplemental Material [24].
Elastocapillary self-contact.—We first quantify the mor-

phology of the elastocapilary self-contact, and how it is
altered by surface tension. Figure 1(b) shows creased
surface profiles from three experiments with different
elastocapillary lengths: l ¼ γ=G ∼ 0 (red), ∼20 μm (green,
G ∼ 1.1 kPa), and ∼300 μm (blue, G ∼ 65 Pa). Increasing
the elastocapillary length amplifies the relative importance
of surface tension, which on the macroscale leads to
shallower indentations.
However, the most important consequence of γ > 0 is

reflected in the micromorphology of the contact region
(high magnification data, insets of Fig. 1(b). The angle θ
that the surface describes at the contact line changes from a
gentle touchdown with θ ¼ 180° for γ ∼ 0, to θ ¼ 90° for
γ > 0. Hence, besides the fold at the bottom of the crease,
there is a second fold a the top of the self-contact where the
surface profile acquires a T shape. On scales much smaller
than l, capillarity will be dominant over elasticity and we
expect the contact angle to be given by Neumann’s law
[26–28]. In case of perfect self-adhesion, which is expected
for soft polymer gels, the surface tension in the self-contact
vanishes completely. The remaining balance of gel-liquid
surface tensions implies the fold of θ ¼ 90° [Fig. 1(b)], in
good agreement with our experiments.
Consequential to this second fold is a strong curvature κ

of the free surface near the contact line. When attempting to
quantify this curvature, however, it turns out that κ does not
reach a well-defined limiting value. Rather, it still grows as
we reach our measurement resolution, which is well below
the elastocapillary length. Figure 2 (purple markers) shows
the measured curvature as a function of the distance
to the contact line, for l ∼ 20 μm. Surprisingly, the data
suggest a logarithmic divergence of κ as the contact line is
approached.
The logarithmic singularity of curvature is caused by the

capillary boundary condition, which forces the material
into a 90° angle. Analogous to the bottom of the crease
[2,19,20], a fold of angle θ introduces a weak (logarithmic)
stress singularity. For a neo-Hookean solid the stress
singularity reads pel ¼ ðπ=θ − θ=πÞG lnðjxjÞ þ p0 [29],
where θ is the fold angle in radians and p0 a gauge
pressure. At the bottom of the self contact, where the crease
was initiated, the fold has an angle θ ¼ 2π. In contrast, the
two folds at the contact line involve an angle θ ¼ π=2,
connecting the self-contact to the free surface in a T shape.
Thus the elastic stress must be balanced by the Laplace
pressure γκ ¼ −pel, which for a right angle gives the
elastocapillary balance

(a)

(b)

FIG. 1. (a) A uniaxially compressed soft material creases
beyond a certain critical strain ϵc, folding its surface into a
self-contact. The crease persists below ϵc, and scars remain even
at ϵ ¼ 0: contact line pinning prevents complete unfolding.
(b) Confocal images of creases for different elastocapillary
lengths, l ¼ γ=G ≈ 0 (red), 20 (green), and 300 μm (blue).
Insets: solid surface tension impacts the contact angle θ at the
edge of the self-contact.
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valid at distances jxj ≪ l. Here we absorbed the gauge
pressure p0 into a dimensionless constant b. The prediction
(1) is shown as the solid line in Fig. 2, in excellent
agreement with the experimental data. We only adjusted
the value of b, which cannot be derived by the local
analysis of the singularity: it reflects a gauge pressure that
is inherited from the full solution, invoking scales larger
than l.
To explore this effect, we performed finite element

simulations of elastocapillary creases, assuming a neo-
Hookean solid with constant surface tension (see
Supplemental Material for details [24]). Numerical results
are obtained for various ratios of l=L, where L is the crease
length. All numerical results exhibit the logarithmic
divergence of curvature (Fig. 2, lines), following the
prediction (1). The fact that the data are shifted laterally
reflects the nonuniversality of b. Still, the numerical
data gradually approach the experimental data as l=L
approaches the experimental value.
Thus we conclude that the capillary nature of adhesive

creases has two important consequences at the microscale:
(i) it governs the contact angle θ, implying a second fold at
the top of the crease where the surface is T shaped. (ii) the
fold, in turn, introduces a logarithmic singularity of
the elastic stress and the surface curvature at the edge of
the self-contact.
Intermediate asymptote.—Contrarily, for x ≫ l, we

expect capillary effects to play no role and hence, the
problem should be described by a purely elastic solid
mechanics. Then the crease length L becomes the relevant

scale, and the morphology of the free surface was predicted
to exhibit the scaling [19]

y − y0
L

∼
�
x
L

�
2=3

; ð2Þ

where y0 is the vertical coordinate of the contact line. This
intermediate asymptote is expected to be valid whenever
l ≪ x≲ L. Figure 3 shows the collapse of simulations
and measurements for γ ∼ 0 and various ϵ, and confirms the
2=3 exponent.
Folding-unfolding asymmetry.—Elastocapillary (inner)

and elastic (intermediate) regions can be collapsed simul-
taneously by choosing the appropriate scales x ¼ lxx̂
and y ¼ lyŷ on each axis. The inner, elastocapillary
morphology (1), requires l2x=ly ¼ l to collapse the data.
The scaling behavior of the intermediate region (2),
requires ly=l

2=3
x ¼ L1=3. Both requirements are fulfilled

simultaneously by choosing

lx ¼ l3=4L1=4; ly ¼ l1=2L1=2: ð3Þ

In Fig. 4, the original interface profiles (left panels) are
shown next to the profiles as rescaled by the prediction (3)
(right panels). The simulation data (top) almost collapse on
a single curve, where the remaining difference can be
attributed to the nonuniversal gauge pressure. The exper-
imental data (bottom), by contrast, clusters into two groups.
Filled symbols correspond to measurements after ϵ has
been increased and form the upper master curve (folding).
Open symbols correspond to measurements after ϵ has been
decreased and form the lower master curve (unfolding).
The experiments show that the history of the crease is

important for the observed morphology, even for ϵ > ϵc,
where only the creased state is stable. The interface profiles

FIG. 2. Free surface curvature κ versus the horizontal distance x
to the contact line, in units of the elastocapillary length l ¼ γ=G.
κ diverges logarithmically for x → 0, both in experiments
(symbols) and in simulations (lines). The horizontal shift between
the curves reflects difference in gauge pressure p0 in the log,
which depends on the ratio l=L. The experimental data was taken
after compressing, for l ∼ 20 μm.

FIG. 3. Free surface profiles (experiment and simulation) for
various ϵ for the case where γ ≈ 0. The collapse of data confirms a
universal shape that is governed by the crease length L, according
to Eq. (2).
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observed during folding are manifestly different from the
profiles during unfolding, the latter being more shallow.
This asymmetry between folding and unfolding is not
observed in the simulations. For a given set of parameters,
the numerical minimization of elastocapillary energy
selects a unique crease morphology. Clearly, an element
beyond equilibrium elastocapillary mechanics is required
to properly interpret the experiments, which originates from
contact line physics.
Contact line pinning.—The difference in morphologies

upon switching from compression to expansion is visual-
ized in the inset of Fig. 5. The green profile is taken during
the compression phase, while the red profile is obtained
after a subsequent release of strain. Clearly, the global
indentation of the free surface decreased upon reducing ϵ,
while the crease length L remained identical up to the
measurement resolution. This offers direct evidence for
contact line pinning, where there is no “unfolding” at all,
i.e., no change of material points at the contact line
[cf. sketch in Fig. 1(a)].
In the present context, the morphological hysteresis

readily impacts the crease length L, which is no longer
a pure function of the imposed strain ϵ. This is shown in
Fig. 5 (main plot), reporting L versus ϵ. While bistability is
well known below the onset of creasing, we here find an
additional bistability that is caused by contact line pinning:
the shaded area shows that, even well above the onset of
creasing, the crease length still exhibits a history depend-
ence. After increasing ϵ, smaller L are selected, rather than
after decreasing ϵ, especially for l ∼ 20 μm (orange curve,
same data as in Fig. 4). For γ ∼ 0, the measurement error is

comparable to the detected hysteresis, and no definitive
statement on its existence can be made. Because of
experimental limitations we can only give an upper bound
for the scar length ∼10 μm. However, the fact that this
hysteresis loop becomes more pronounced for larger l
suggests a capillary origin of contact line pinning.
The observed contact line pinning is analogous to the

wetting of liquids on solid surfaces [30]. In that case, the
motion of solid-liquid-vapor three-phase contact lines is
arrested by pinning on heterogeneities of the solid surface.
Such heterogeneities lead to a complicated energy land-
scape which allows for a range of stable liquid morphol-
ogies, leading to a range of contact angles. The pinning
observed for creasing could be of similar origin as in
wetting, where an energetic barrier Δγ is required to move
the contact line across features of the surface topography.
We therefore expect a range of mechanically stable crease
lengths of the order of ΔL ∼ Δγ=G. This ultimately
prevents complete unfolding: the remaining elastic energy
is not sufficient to overcome this pinning barrier. This
explanation for scars is similar to that given in Ref. [18],
which was phrased in terms of an energy release rate rather
than Δγ. From our findings, however, it is clear that the

FIG. 4. Folding-unfolding asymmetry. Numerical (top) and
experimental (bottom) profiles of the crease can be collapsed
after rescaling by (3) (right panels). The experimental curves
(elastocapillary length l ∼ 20 μm) cluster into two sets, depend-
ing on whether the global compressive strain ϵ was increased
(filled symbols) or decreased (open symbols) prior to the
measurement. Surface profiles are shallower during unfolding
than during folding.

FIG. 5. Length of the self contact L as a function of global
strain ϵ, for purely elastic (l ∼ 0, blue) and adhesive, elastoca-
pillary (l ∼ 20 μm) creases. Two types of hysteresis can be
observed: (i) the subcritical and critical transitions from the
homogeneous to the creased state (ϵ ∼ 0.28), and back to
homogeneous (ϵ ∼ 0.15), respectively. (ii) The creased state
exhibits a manifold of possible L for each ϵ (shaded area). L
depends on its history, reminiscent of contact line pinning. Upper
inset: Two profiles of similar L but different ϵ (green: after a
compression; red: after releasing). Lower inset: A tiny scar
remains after full relaxation and even at ϵ < 0. The error bars
in the main plot reflect the uncertainty in determining the absolute
size of the (residual) crease. As this merely provides a systematic
offset to the length of developed creases, the uncertainty of the
length hysteresis (shaded area) is much smaller (∼0.005).
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energy release rate for unfolding an adhesive crease cannot
be given by the reversible work of self-adhesion, based on
surface energies, as that would not offer a mechanism for
contact line pinning. Indeed, our finite element simulations
(with reversible adhesion) do not give a folding-unfolding
asymmetry. They lack the new bistability indicated by the
shaded areas in Fig. 5, and do not admit any scars. To
exclude the tracer particles as cause for the scars in our
experiments, we also tested an uncoated specimen by
brightfield reflection microscopy, finding the same behav-
ior (see Supplemental Material [24]). Our explanation in
terms of contact line pinning is also consistent with the
observation of scar annealing on long timescales [16,18]:
once again, this resembles the case of liquid wetting, where
contact line pinning can indeed be overcome by thermal
activation [31–33].
Outlook.—Our confocal microscopy experiments have

revealed an intrinsic folding-unfolding asymmetry, induced
by contact line pinning, that offers a natural explanation for
scars. Pinning is therefore a central element in creasing that
needs to be accounted for in theory and simulations, and
offers a way to articulate the role of “defects.” In addition,
we have shown that surface tension dictates the mechanics
at scales below the elastocapillary length, folding the
solid into well-defined contact angles. As such, the crease
morphology opens a new route to quantify solid-solid
interfacial mechanics, in line with recent developments for
solid-liquid interfaces [27,34]. Understanding the interfa-
cial micromechanics of soft materials unfolds their poten-
tial as programmable matter [35], impacting, for instance,
soft robotics [36], biomolecular patterning [12], or smart
textiles [37].
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