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We present the first experimental realization of a time crystal stabilized by dissipation. The central
signature in our implementation in a driven open atom-cavity system is a period doubled switching between
distinct checkerboard density wave patterns, induced by the interplay between controlled cavity
dissipation, cavity-mediated interactions, and external driving. We demonstrate the robustness of this
dynamical phase against system parameter changes and temporal perturbations of the driving.
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Phase transitions of matter can be associated with the
spontaneous breaking of a symmetry. For crystallization,
this broken symmetry is the spatial translation symmetry,
as the atoms spontaneously localize in a periodic arrange-
ment. In analogy to spatial crystals, the spontaneous
breaking of temporal translation symmetry can result in
the formation of time crystals. Following its initial
proposal [1,2], the possibility of time crystals in the
ground state of equilibrium many-body systems was ruled
out for fundamental reasons [3,4]. This development led to
a paradigm shift, directing the search for time crystals
towards genuine nonequilibrium scenarios [5–11]. In
particular, the no-go theorem [3,4] can be circumvented
by periodic driving, which imposes a discrete time trans-
lation symmetry on the system. Floquet or discrete time
crystals emerge, when discrete time translation symmetry
is spontaneously broken, which manifests as a subhar-
monic response of an observable [12–15]. Previous
experimental studies have focused on driven closed
quantum systems with long-lived time crystalline response
enabled by many-body mechanisms, which impede exces-
sive heating [5–7,16,17]. However, as proposed by theo-
retical work [18–22], dissipation and fluctuations, induced
via controlled coupling to a suitable environment can
also serve as a source for stabilization of time-crystal
dynamics.
Here, we report the experimental realization of a dis-

sipative time crystal (DTC) phase in an atom-cavity plat-
form [23]. This is inspired by a recent theoretical proposal
for a time crystal stabilized through an interplay between
interaction and dissipation in the open Dicke model, arising
when the light-matter coupling is periodically modulated
[18–20]. The defining feature of this paradigmatic DTC is a
subharmonic response, where the system periodically
switches between pairs of Z2 symmetry broken super-
radiant states.

A Bose-Einstein condensate (BEC) of 87Rb atoms is
prepared inside a high-finesse optical cavity pumped by a
retroreflected laser beam at wavelength λP ¼ 803 nm,
aligned perpendicular to the cavity axis, as depicted in
Fig. 1(a). The atom-cavity system operates in the recoil-
resolved regime, where the cavity field and the atomic
distribution evolve at a similar timescale leading to a
retarded infinite-range cavity-mediated interaction between
the atoms [24]. Above a critical value of the pump strength
ϵ, the system undergoes a self-organization transition from
a BEC phase to a density wave (DW) phase, which
emulates the superradiant phase transition in the open
Dicke model [25,26]. In a spontaneous Z2 symmetry
breaking process, an intracavity optical lattice arises, which
traps the atoms either in the black or the white squares of a
checkerboard pattern, denoted as odd and even DW.
An effective driving of the light-matter coupling can be

realized by modulating the pump strength. Off-resonant
driving of the pump strength at a frequency ωD notably
exceeding the recoil frequency ωrec ≡ ℏk2=ð2mÞ ¼ 2π×
3.55 kHz, with k≡ 2π=λP and the atomic mass m, leads to
a dynamical renormalization of the phase boundary
between the BEC and DW phases [27,28]. On the other
hand, a period doubling response characterized by periodic
switching between the odd and even DWs has been
predicted for modulating only slightly above the recoil
frequency [18,29,30]. This phase, originally addressed as
dynamical normal phase [18], shows subharmonic oscil-
lations between the two Z2 symmetry broken even and odd
DW states and is closely related to the DTC phase proposed
in the open Dicke model [19]. In the thermodynamic limit,
N → ∞, the Dicke model can be transformed into a
parametrically driven coupled oscillator system with two
polaritonic states. Driving at twice the lower polariton
frequency leads to an instability, which gives rise to a
period-doubling response in the full atom-cavity model
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(cf. Ref. [31]). In the following, we describe the exper-
imental realization of a DTC in our atom-cavity system and
analyze its properties as a time crystal.
Each experimental sequence begins with preparing the

atom-cavity system in the self-organized DW phase (see
Ref. [31]). An example of a time sequence for the pump is
shown in Fig. 1(b). For t < −5TD the system is in the BEC
phase. The intracavity photon number NP is zero and the
observed momentum spectrum in the upper panel of
Fig. 1(d) shows the BEC mode at zero momentum and
two Bragg resonances at �2ℏk along the y direction,
associated with the matter grating induced by the pump
wave. This grating is illustrated in the lower panel of
Fig. 1(d) by showing the single-particle density distribution
obtained from a mean-field model (see Ref. [31]). The self-
organization transition into the DW phase is observed in

Fig. 1(c) around t ≈ −5TD, as evidenced from a significant
increase in the intracavity photon number NP and the
locking of the relative phase ϕ between the pump and
cavity fields at a constant value ϕ ≈ 0. A momentum
spectrum, characteristic for the DW phase, is shown in
the upper panel of Fig. 1(e) for t ¼ 0. The occupation of the
momentum modes fpy; pzg ¼ f�ℏk;�ℏkg signals the
formation of an intracavity checkerboard matter grating,
as illustrated by the calculated single-particle density
distribution, shown in the lower panel. The two possible
energetically degenerate DW states can be distinguished by
their associated values of the phase ϕ ¼ 0 or ϕ ¼ π for odd
and even realizations, respectively [37]. We measure NP
and ϕ using a balanced heterodyne detection scheme [38].
The probability for the occurrence of the odd and even DW
configurations is found to be close to 50% (see Ref. [31]),
which confirms that the discrete symmetry breaking in the
chequerboard DW phase is well established in our system.
Upon preparation of the DW phase, in the time interval

delimited by the vertical dashed lines, we linearly increase
the modulation strength f0 in 500 μs from zero to its final
value [see Fig. 1(b)]. Subsequently, f0 is kept constant for
5 ms, such that the pump strength evolves according to
ϵ ¼ ϵ0½1þ f0 sinðωDtÞ�. The dynamical response seen in
Fig. 1(c) for positive t presents the key observation of this
work: the emergence of a DTC phase characterized by
pulsating behavior of the intracavity photon number NP
(red trace) and a period-doubling response of the relative
phase ϕ (blue trace). The presence of intracavity photons
highlights the many-body aspect of the DTC phase since
they induce a retarded infinite-range interaction or all-to-all
coupling between the atoms. The period-doubling dynam-
ics arises in the relative phase ϕ. As ϕ switches from zero to
π or vice versa after one modulation cycle, the atomic
ensemble self-organizes from one type of checkerboard
lattice [see Fig. 1(f)] to its symmetry-broken partner [see
Fig. 1(h)]. That is, the system requires two modulation
cycles to return to its initial configuration. After half of a
modulation period, the system crosses from the DW phase
with significant occupation of the cavity mode, to the BEC
phase, where the cavity is almost empty. This behavior,
corroborated by the momentum distribution in Fig. 1(g), is
responsible for the pulsating intracavity photon number in
Fig. 1(c) (red trace).
In Figs. 2(a)–(f), we present the various dynamical

regimes accessed by tuning the modulation strength. For
weak modulation [see Figs. 2(a) and 2(d)], the system stays
in the DW phase and the relative phase remains locked to its
value before the pump modulation. For intermediate
modulation strength, the relative phase exhibits period-
doubling dynamics [see Fig. 2(b)], resulting in a subhar-
monic peak at ω ¼ ωD=2 in the Fourier spectrum in
Fig. 2(e). Increasing the modulation strength even further
leads to chaotic dynamics dominated by heating and loss of
spatiotemporal coherence [see Figs. 2(c) and 2(f)]. In
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FIG. 1. Dissipative time crystal. (a) Schematic diagram of the
transversely pumped atom-cavity system. (b) Time sequence for
the pump with modulation strength f0 ¼ 0.3 and modulation
period TD ¼ 0.25 ms. In the time interval delimited by dashed
lines, f0 is linearly ramped from zero to its desired value. (c) The
corresponding response of the intracavity photon number NP
(red) and the relative phase ϕ between the pump and the cavity
light field (blue). (d)–(h) Top panels: momentum distributions
measured at instances of time marked by dashed arrows in (c).
Bottom panels: corresponding mean-field results for the single-
particle density distribution, which shows periodic switching
between even and odd DWs at twice the driving period.
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contrast to the coherent switching observed in the DTC
phase, the chaotic phase is characterized by intermittent
dynamics of the relative phase, whereby the system appears
to get stuck in one type of checkerboard pattern for two or
more consecutive driving cycles [see Fig. 2(c)].
Next, we test the robustness of the DTC against

variations of the system parameters and temporal pertur-
bations. To this end, we calculate the relative crystalline
fraction Ξ [6,7], defined by means of the amplitude of the
subharmonic peak in the normalized Fourier spectrum
SϕðωÞ of the relative phase ϕ rescaled by its maximum,
i.e., Ξ ¼ SϕðωD=2Þ=Smax;ϕ, where Smax;ϕ is the maximum
crystalline fraction measured in the parameter space
spanned by f0 ∈ ½0; 1� and ωD ∈ 2π × ½0; 9� kHz.
Figure 2(g) displays the relative crystalline fraction for
varying modulation parameters ωD and f0. We observe
large relative crystalline fractions Ξ > 0.2 for modulation
frequencies ωD ∈ 2π × ½2; 8� kHz signaling a robust DTC
order for a wide range of modulation parameters. Note that
the overall shape of the relative crystalline fraction in
Fig. 2(g) resembles the stability island of the DTC obtained
from numerical simulations using a simple mean-field
model (see Ref. [31], Fig. 3).
To explore the robustness of the DTC against temporal

perturbations, we introduce a disorder in time by super-
imposing Gaussian white noise onto the signal of the
pump strength. The noise strength is measured by

n≡P
2π×50 kHz
ω¼0 jEnoisyðωÞj=

P
2π×50 kHz
ω¼0 jEcleanðωÞj, where

Enoisy (Eclean) is the Fourier spectrum of the pump in the
presence (absence) of white noise. Figures 2(h)–(j) show
how the relative crystalline fraction changes with increas-
ing noise strength. The area with clear DTC response, i.e., a
large relative crystalline fraction, shrinks as the noise
strength increases. Nevertheless, we still find a sizable
region, where a DTC phase exists, for relatively large noise
strength [Fig. 2(j)]. For a fixed set of modulation para-
meters marked by the red crosses in Figs. 2(g)–(j), typical
single-shot results for varying noise strengths are depicted
in Figs. 3(a)–(d). Note that even for a strongly distorted
pump signal, as in Figs. 3(c) and 3(d), the system still
switches multiple times between the two sublattices before
the intracavity photons disappear. The relative crystalline
fraction at fixed modulation parameters decreases with
increasing noise strength, as shown in Fig. 3(e). The small
offset for large noise strength n > 25 is due to the back-
ground noise in the Fourier spectrum [see Fig. 2(f)]. Our
experimental findings suggest that the DTC in the modu-
lated atom-cavity system is robust against fluctuations not
only from the nonunitary dynamics of the dissipative cavity
but also from temporal disorder added via driving.
Finally, we address the decay of the time-translation

symmetry breaking response in the DTC phase, for
example, seen in Fig. 3(a). The experimental lifetimes of
time crystal implementations are generally finite due to a
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FIG. 2. Dynamical regimes. Dynamics of the relative phase ϕ for (a) f0 ¼ 0.05, (b) f0 ¼ 0.25, and (c) f0 ¼ 0.95 with fixed
ωD ¼ 2π × 4 kHz. (d)–(f) Corresponding Fourier spectra of the dynamics in (a)–(c). As the modulation strength is increased, the system
transforms from a DW to a DTC phase. Strong modulation leads to heating and chaotic behavior. (g)–(j) Dynamical phase diagram
showing the relative crystalline fraction Ξ as a function of the modulation frequency ωD and strength f0 for (g) clean modulation,
(h) weak noise strength n ¼ 9.6, (i) intermediate noise strength n ¼ 15.9, and (j) large noise strength n ¼ 22.3. The diagram is
constructed by dividing the parameter space into 18 × 18 plaquettes and within each averaging over multiple experimental runs (at least
four realizations). Red crosses in (g)–(j) mark the modulation parameters used in Figs. 3(a)–(d). Increasingly large noise strengths shrink
the area in the phase diagram where a stable DTC phase prevails.
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combination of technical limitations and undesired relax-
ation dynamics [5–7,16,17]. In our experiment, the main
cause for the decay of time-crystal dynamics can be
attributed to two factors: (i) short-range collisional inter-
action and (ii) atom losses. In the case of the open Dicke
model, the all-to-all coupling between the atoms makes it
amenable to a mean-field description. In this theoretical
limit, the mean-field solvability of the Dicke model
provides the Dicke DTC with the necessary long-range
spatiotemporal order and robustness such that it can persists
to infinitely long times[19,20]. However, when mean-field
breaking terms are present, the DTC may become unstable,
leading to a decay of the symmetry breaking response [20].
In the atom-cavity system, the short-range interaction
between the atoms competes with the collective coupling,
induced by the cavity photons, and breaks the mean-field
solvability of the model. To investigate the damping effects
of short-range interaction and atom loss, we employ the
truncated Wigner approximation (TWA). The transversely
pumped atom-cavity system is thereby modeled by con-
sidering only the degrees of freedom along the pump (y
direction) and the cavity (z direction) axes (see Ref. [31]).
The short-range interaction is quantified in terms of the
mean-field collisional interaction energy Ea ¼ ðUa=NaÞ×R
dydzjψ0ðy; zÞj4, where Ua denotes the effective two-

dimensional interaction strength (see Ref. [31]), Na is the
number of atoms and ψ0ðy; zÞ is the wave function of the
homogeneous BEC. We also include in our model a
phenomenological atom loss channel described by
dNa=dt ¼ −2γNa. We simulate the dynamics of the intra-
cavity photon number NP ¼ hâ†âi, where â (â†) is the
bosonic operator that annihilates (creates) a photon in the
single-mode cavity. To characterize temporal long-range

order, we calculate the two-point temporal correlation
function CðtÞ ¼ Re½ha†ðtÞaðt0Þi�=ha†ðt0Þaðt0Þi at t0 ¼ 0,
the time before the modulation is switched on.
The resulting evolution of NPðtÞ and CðtÞ is studied in

Fig. 4 for different values of Ea. First, we consider the
dynamics in the absence of atom loss. For weak interaction
strength Ea ¼ 0.08Erec, NPðtÞ and CðtÞ in the green traces
of Fig. 4 are practically indistinguishable from the findings
for Ea ¼ 0 in the blue traces. However, stronger short-
range interactions with Ea ¼ 0.30Erec lead to a metastable
DTC, where the period-doubling oscillations in CðtÞ decay
after a few cycles, as seen in the red trace in Fig. 4(b). This
translates to irregular dynamics of the corresponding
intracavity photon number NPðtÞ [red trace in Fig. 4(a)]
in the long-time regime. Introducing an atom loss channel
with γ ¼ 40 s−1, which models the observed atom decay
rate in the experiment, yields exponentially decaying
behavior as shown in the black traces in Fig. 4. This
behavior closely resembles the characteristic exponential
decay of NP in our experiment, such that the cavity is
almost empty for t=TD > 15 [see Figs. 3(a)–(d)]. Atom loss
leads to a trivial suppression of the atom-cavity coupling
and hence of intracavity photons. When the number of
intracavity photons falls below the detection level, the
relative phase ϕ becomes ill-defined leading to the fast and
irregular oscillations of ϕ seen in Figs. 3(a)–(d) for late
times. Since we are operating close to the phase boundary
between the DW and the normal phase the system is very
sensitive to atom loss, which primarily limits the DTC
lifetime in the experiment.
Our observations confirm the realization of a dissipative

time crystal in an atom-cavity system with the defining
feature of period-doubling dynamics. This quintessential
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FIG. 3. Robustness of subharmonic response. (a)–(d) Single-shot experimental runs for the noise strengths applied in Figs. 2(g)–(j)
and for values of ωD and f0 according to the red crosses in these figures. Top panels: single-shot protocols for the pump strength. Bottom
panel: corresponding time evolution of the relative phase ϕ (blue trace) and intracavity photon numberNP (red trace). (e) Dependence of
the relative crystalline fraction Ξ on the noise strength averaged over 7 experimental runs with f0 ¼ 0.2 and ωD ¼ 2π × 4 kHz. The gray
dashed lines mark the noise strengths used in (a)–(d).
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DTC is robust against changes of the system parameters
and temporal perturbations added to the drive, thereby
fulfilling the robustness property of time crystals.
Numerical results based on a simplified semiclassical
model imply that short-range interaction and atom loss
limits the lifetime of the DTC phase.

This work is funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) SFB-
925 Project No. 170620586 and the Cluster of Excellence
Advanced Imaging of Matter (EXC 2056), Project
No. 390715994.

Note added in the proof.—During submission of this work,
a subsequent example of dissipative time crystal was
reported in an all-optical system [39].
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