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We present a unifying approach that describes both surface bending and fracture in the same geometrical
framework. An immediate outcome of this view is a prediction for a new mechanical transition: the
buckling-fracture transition. Using responsive gel strips that are subjected to nonuniform osmotic stress, we
show the existence of the transition: Thin plates do not fracture. Instead, they release energy via buckling,
even at strains that can be orders of magnitude larger than the Griffith fracture criterion. The analysis of the
system reveals the dependence of the transition on system’s parameters and agrees well with experimental
results. Finally, we suggest a new description of a mode I crack as a line distribution of Gaussian curvature.
It is thus exchangeable with extrinsic generation of curvature via buckling. The work opens the way for the
study of mechanical problems within a single nonlinear framework. It suggests that fracture driven by
internal stresses can be completely avoided by a proper geometrical design.
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Thin elastic sheets respond to stresses in various ways:
long wavelength buckling, wrinkling [1–4], folding [5,6],
and crumpling [7–10]. The most singular response to stress
is fracture, which involves the separation of the material
into fragments. While the phenomenology of buckling,
wrinkling, and crumpling is studied within the framework
of plate theories, cracking of thin plates is studied in a
different framework—usually the linear elastic fracture
mechanics (LEFM) [11,12].
An everyday example of cracking occurs when placing a

hot glass cup on a cold marble table. The sharp temperature
gradients within the cup lead to the buildup of stresses that
can drive crack propagation. In a controlled experimental
study of this phenomenon [13], a rectangular hot glass
plate was dipped into a cold liquid in a fixed velocity.
Depending on the dipping velocity, a single straight crack, a
wavy crack, or several cracks propagated in the plate.
Qualitatively similar phenomena were observed in other
brittle materials [14]. Theoretical studies were mainly
focused on understanding the wavy crack [15,16] or
multiple crack propagation [17].
In what follows, we show that the dipped plate experi-

ment is very similar to a different set of mechanical
problems that was recently studied: the problem of non-
Euclidean plates (NEPs). NEPs are thin elastic plates
with intrinsic, non-Euclidean two-dimensional (2D) geom-
etry. Such plates can be generated via nonuniform swelling
[18–21], via growth of living tissue [22–24], or through
plastic deformation [25,26]. NEPs were studied within the
framework of incompatible elasticity. The in-plane inelastic
deformation prescribes a reference metric field ḡðx; yÞ on
the midplane of the plate, a metric field that encodes the
local in-plane equilibrium distances between material
elements. The reference metric can be non-Euclidean

namely, it determines via Gauss Theorema Egregium, a
non-zero reference Gaussian curvature K̄. In such cases, the
plate’s s equilibrium configuration is set by the competition
between the bending and stretching energies [27]. The
bending energy density is proportional to the cubic power
of the thickness h and a quadratic function of the local
curvatures. The stretching energy density is linear in h and
a quadratic function of the in-plane strain, which is
expressed as the difference between the reference metric
and the actual metric of a configuration: ES ∝ ðg − ḡÞ2
[27]. This implies that stretch-free configurations are those
in which g ¼ ḡ. Since the Gaussian curvature is the only
local invariant quantity of a 2D metric [28], a stretch-free
configuration requires K ¼ K̄ everywhere. Likewise, a
local deviation of K from K̄ is a source of in-plane elastic
strain. Experiments in responsive gel sheets [18–20] con-
firmed this assertion: In the thin limit, NEP indeed buckled
and settled very close to embeddings of the reference metric
with K ¼ K̄ nearly everywhere.
The glass plate in the dipping experiment is in fact a non-

Euclidean plate. The local temperature profile defines via
thermal expansion local equilibrium distances, i.e., a
reference metric. The reference metric in these experiments
is invariant parallel to the water-air interface (the x
direction) depending only on the distance y from it

ḡðyÞ ¼
�
f2ðyÞ 0

0 1

�
; ð1Þ

where fðyÞ is the relative horizontal expansion at distance y
from the water-air interface (measured on the deformed
sheet). The reference Gaussian curvature prescribed by
such metrics is given by (see Ref. [28])
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K̄ðyÞ ¼ − f00

f
: ð2Þ

NEPs with such metrics were studied extensively
[25,26,29–31] and were found to buckle and wrinkle.
An immediate question would be the following: Why do
the glass plates break, while gel sheets with a similar type
of reference metric buckle? In addition, can the reduction of
in-plane strain due to crack propagation be described as an
approach of an actual metric to a reference one? If so, can
we define a geometrical “charge” of Gaussian curvature to
a crack and can it be related to conventional parameters
of LEFM?
To address these questions, we designed an experimental

setup which allows the investigation of the problem over a
wide range of the relevant parameters. It consists of flat
strips of polyacrylamide gel, which are immersed vertically
in a thick water layer floating on top of a concentrated
solution of polyethylene glycol (PEG4000) in water (25%–
30% by weight). The sheets are slowly dipped into the PEG
(typical speed v ≈ 3 mm=h) [Fig. 1(a))]. The large PEG
molecules cannot penetrate the fine porous gel; thus, water
flows out of the gel to balance the osmotic pressure. As a
result, the gel assumes a new reference volume within the
PEG solution, which is significantly smaller than the
equilibrium volume within water. In this way, the nonuni-
form PEG concentration profile defines a non-Euclidean
reference metric of the form of Eq. (1), with fðyÞ being the
swelling factor at distance y from the water-PEG interface.
It is of the form of a smoothed step function characterized
by the normalized ratio of strip widths in the water and PEG
regions: Δ≡ ½ðfwater − fPEGÞ=fPEG�, and the length of the
transition layer between them,l [Fig. 1(b))]. For such a
metric, the reference curvature is zero away from the
interface and it is of magnitude K̄ ∼ ðΔ2=l2Þ in the
transition region (positive or negative in the water or
PEG regions).
At long times, PEG molecules diffused into the water

and the transition region lðtÞ widened. Therefore, in each
experiment, the gel strip went through a sequence of
reference metrics ḡðtÞ. In the reported experiments, we
used strips of constant length (15 cm) and varied the width
and thickness in the ranges 2–5 cm and 0.1–2 mm,
respectively. The value of Δ was 0.32� 0.01 and l was
varied from ∼1 mm (in the beginning of an experiment) to
∼10 mm (at the final stages of the experiments). One or
more vertical notches were inserted in the bottom horizon-
tal edge of the strips to allow crack propagation. As the gel
strips were dipped into the PEG, we measured their
configurations (every 10 min) using laser tomography
[Fig. 1(c)) and Methods section in the Supplemental
information file [32]].
The non-Euclidean gel strips showed a transition

between two qualitatively different behaviors. Some of
them behaved like the glass plates in Ref. [13]; they

remained flat and cracks propagated in them. We observed
strips with a single straight crack, with a single wavy crack,
or with several propagating cracks [Fig. 2(a)]. The second
type of behavior was buckling. The immersed strips
buckled into 3D bottlelike configurations approaching
the non-Euclidean reference metric by bending. In some
of the plates, we found a combination of the two behaviors:
The strips slightly buckled and a crack propagated in them.
The mode of deformation of the sheets was correlated with
their thickness. Very thin plates buckled, and no cracks
propagated in them [Fig. 2(a) left]. At larger thicknesses,
we found less bending of the strips, with still no crack
propagation [Fig. 2(a) second from the left]. At further
larger thickness, we observed crack propagation together
with a significant decrease in the bending content [Fig. 2(a)
middle]. At the largest thickness and widths, we observed
more complex crack structures with no measurable surface
bending [Fig. 2(a) right].

FIG. 1. Schematics of the experimental system. (a) A poly-
acrylamide gel strip is immersed into a stratified fluid. The top
layer of the fluid is 100% water. The bottom layer is 25%
PEG4000 in water. In the transition region, the osmotic pressure
gradient prescribes a non-Euclidean metric on the sheet. (b) An
illustration of the reference strip widths that are induced by the
PEG concentration profile. The parameter Δ used in the text is
defined as Δ≡ ½ðW − W̃Þ=W̃�. Regions of positive and negative
reference Gaussian curvature are marked on the figure. (c) Scan-
ning laser sheet illuminates the gel. A camera captures the signal
from fluorescent powder within the sheet, allowing the con-
struction of its 3D configuration (see Methods section in the
Supplemental information file [32] for details).
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The experimental results can be explained by the
following scaling analysis. The total energy of a plate is
F ¼ FB þ FS þ FF, where FB is the bending energy, FS is
the stretching energy, and FF is the fracture surface energy.
Adopting the Griffith approach to crack propagation, we
consider the effect of an infinitesimal dipping δy of the
sheet into the PEG solution. Such dipping would cause an
increase in the stretching energy since the sheet in its flat
configuration does not obey its reference non-Euclidean
metric. The strain estimated as the “inverse Laplacian” of
the reference Gaussian curvature is ε ∝ W2K̄. The variation
in the stretching energy is, therefore,

δFS ∝ EhWδy

�ðWΔÞ2
l2

�
2

: ð3Þ

A propagation of the crack by δy would lead to an increase
of FF by

δFF ∝ Γhδy: ð4Þ

Finally, a complete relaxation of in-plane stresses by buck-
ling (with the typical curvatures being jκ1;2j≈

ffiffiffiffiffiffiffijKjp
≈ðΔ=lÞ)

would cause an increase of FB by

δFB ∝ WδyEh3
Δ2

l2
: ð5Þ

Here, E is the Young’s modulus of the material and Γ is its
fracture energy.
Depending on material parameters and the strain

ε ∼ ½ðWΔÞ2=l2�, one can identify limits in which the system
is dominated by either of the modes: relaxation of in-plane
strain by buckling, relaxation via fracturing, or remaining
flat and complete, keeping the in-plane strain. Balancing
δFS with δFB identifies the buckling-stretching transition
εBS ∼ ðh2=W2Þ, which is the scaling of the threshold for
buckling of a plate. Balancing δFS with δFF identifies the
fracture-stretching transition εFS ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ=EW

p
, which is the

Griffith criterion (see Supplemental Material [32] Sec. 2).
Finally, balancing δFF with δFB identifies a buckling-
fracturing transition: εFB ∼ ½ðWΓÞ=Eh2�. We obtain a 2D
phase space, which includes all three behaviors [inset of
Fig. 2(b)].
While the two first transitions are well known, the

buckling-fracture transition and its scaling have not been
reported or studied. Our experimental results [Fig. 2(b)]
confirm the existence of this transition and its predicted
scaling: No propagating cracks were observed below a
transition strain (note that the scaling argument accounts
only for the functional dependent of the transition, not to
the exact value of the strain; the quantitative agreement
presented in the figure is coincidental). Cracks would not
propagate in thin enough plates that relaxed strain via
buckling even for internal strains that can be an order of
magnitude larger than the Griffith criterion [the horizontal
line in the inset of Fig. 2b)]. Slightly above the transition
curve, single straight cracks were found to propagate.
Farther away into the fracture-dominant region, we found
oscillating cracks and several simultaneously propagating
cracks.
Examining individual experiments, we find a connection

between cracking and surface bending: As long as the crack
propagated, the strip was relatively flat, but once the crack
arrested, the strip buckled and obtained a 3D configuration
(see Video M1 in the Supplemental Material [32]). In order
to study the fracture-buckling interplay, we estimate the
energy that is channeled into fracturing and into buckling at
each moment during specific experiments. The energy
released by fracturing is proportional to the square of
the stress intensity factor—the prefactor of the parabolic

(a)

(b)

FIG. 2. Observation of a buckling-fracture transition. (a) Photos
(top) and surface height measurements (bottom) of gel strips that
are immersed into the PEG solution. Thin strips (left) buckle and
do not support crack propagation. Thicker strips (right) hardly
buckle. Instead, they are fractured by a straight or a wavy crack, or
by several propagating cracks (extreme right). Strip thickness (left
to right): 100, 750, 1500, 1750, and 2100 μm. (b) Measurements
of buckling-fracture transitions. Each vertical column of symbols
indicates the number of propagating cracks along a single experi-
ment. Black circles, no propagating cracks; red circles, a single
propagating crack; red stars, two propagating cracks. The solid
line is the theoretical transition line εFB ∼ ½ðWΓÞ=ðEh2Þ�. Inset:
schematics of the predicted phase diagram showing the buckling-
dominated, the stretching-dominated, and the fracture-dominated
regions. The curves separating these regions are εBS ∼ ðh2=W2Þ,
εFS ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ=EW

p
, and εFB ∼ ½ðWΓÞ=ðEh2Þ�. The axes are as in the

main figure.
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crack opening [11]—and can, therefore, be evaluated
by measuring the crack opening, as defined in the
Supplemental Material Sec. 2.4 [32]. The bending energy
is proportional to the bending content—the integral of the
square of surface curvature (see Supplemental Material
Sec. 2.4 [32]). Both quantities are evaluated from an
analysis of the 3D surface scans. We plot the crack opening
[Fig. 3(a)] and the bending content [Fig. 3(b)] that were
measured during three experiments using strips with differ-
ent thicknesses. The 1 mm thick strip (blue triangles)
initially contained two propagating cracks that stopped
their propagation one after the other. Each of these crack-
arrest events (indicated by arrows) was accompanied by an
increase in the surface bending content and a (trivial) drop

in the total crack opening. The 0.85 mm strip (open
squares) started with a moderate bending content and
one propagating crack. As in the former measurement,
crack arrest was accompanied by a significant increase in
the bending content. The thinnest strip (0.75 mm red
symbols) had no propagating cracks from the very begin-
ning. Its bending content was high throughout the entire
experiment. These measured dynamic transitions imply that
buckling and fracturing serve a similar geometrical task and
can, to some level, be exchanged.
The results above motivate a geometric formulation of

the crack propagation problem: It is well accepted that non-
Euclidean plates reduce in-plane strain via buckling, which
generates surface Gaussian curvature KðrÞ close to K̄ðrÞ,
the reference Gaussian curvature. In fact, within the
formalism of incompatible elastic sheets, it is the only
way internal stresses can be relaxed. The observed
exchangeability between cracking and buckling hints that
crack opening can be described as a distribution of
Gaussian curvature. As known from studies of kirigami
[33], point singularities of Gaussian curvature can be
generated by closing straight cuts. Such a process changes
the reference geometry of the sheet, i.e., it changes K̄ðrÞ.
Fracture differs in two main aspects: It is a generation of
actual (rather than reference) Gaussian curvature KðrÞ
distribution, and it is not limited to point singularities.
The curved crack opening profile is equivalent to a “curved

(a)

(b)

FIG. 3. Switching between fracturing and buckling. The crack
opening (a) and average bending content (b) versus time plotted
for propagating cracks in strips of thickness 1 mm (triangles),
0.85 mm (open squares), and 0.75 mm (circles). The 1 mm thick
strip contained two propagating cracks and low bending content.
Each crack arrest (indicated by arrows) was accompanied by an
increase in the surface bending. The same process was observed
in the 0.85 mm thick strip, which initially contained one
propagating crack. No cracks propagated in the thinnest strip,
which underwent the largest surface bending.

FIG. 4. Curved kirigami and the geometric charge of a crack.
Flat configurations with cuts (left), bent configurations with
edges identified (middle), and maps of the Gaussian curvature
(right). A triangular cut (a) leads to a disk with a missing angle θ
for any loop that surrounds the tip (dotted lines) but not for loops
that do not surround the tip (red circle). (b) The geometry of a
cone. (c) The Gaussian curvature of such geometry is zero, except
for a singularity of þθ at the origin. In a typical “crack opening”
profile (d), the missing angle at the tip is þπ and it decreases to
zero (for a finite opening crack) away from the tip. The bent
configuration (e) as well as the Gaussian curvature map (f) show a
positive point singularity followed by a line singularity (a cusp) of
negative curvature integrated to a total of −π. Such a represen-
tation of a crack includes all the information for the nonlinear
elastic problem.
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kirigami.” It can be shown using the Gauss-Bonnet theorem
(see Supplemental Material Sec. 2.6 [32]) that this leads to
line singularity of negative Gaussian curvature along the
crack edges. Using a kirigamilike method, we demonstrate
the geometry encoded in a surface with curved cuts (Fig. 4).
Increasing the number of cuts allows us to approach a non-
Euclidean smooth geometry with a pricewise Euclidean
sheet (Supplemental Material Fig. S3 [32]).
Viewing a mode I crack as a line distribution of Gaussian

curvature allows us to treat cracking and buckling phenom-
ena in a similar framework. Unlike the case of intrinsic
singularities, such as dislocations whose geometry is
encoded in ḡ, bringing it closer to a defined imposed
configuration [34], the crack geometry is part of the
response of the body. Therefore, it is a property of the
actual metric g. For example, the elastic energy in an
intrinsically flat sheet (Euclidean ḡ) draped on a curved
surface (non-Euclidean g) can be reduced by inserting
cracks [35], which makes g closer to Euclidean. In our
experiments, the sheets are free of external constraints.
Therefore, they can “choose” to release stresses via buck-
ling or fracture—two alternative ways of distributing
Gaussian curvature. In the case of fracture, crack opening
(and thus, the nonlinear strains) is selected as an optimal
distribution of Gaussian curvature line singularity, which
best approximates the reference Gaussian curvature. The
selection of the preferred mode of deformation (buckling or
fracture) is set by the parameters of the problem, somewhat
similar to the selection between elastic and inelastic
deformations of constrained sheets that was studied in
Ref. [36]. In the present case, however, the nucleation or
propagation cost of the geometry-carrying entity is that of a
fracture, and it competes with the cost of global surface
bending, leading to the specific scaling of the transition. A
direct outcome of this view is that fracturing due to residual
stresses can be completely avoided by proper tuning of
geometrical dimensions of the body—mainly its thickness
[an increase of 1 order of magnitude in the critical strain for
fracture is demonstrated in Fig. 2b)]. This observation
might open the way for new technologies that will reduce
aging (due to internal stresses) of energy storing devices.
On a more basic level, having fracture and buckling
described within a single nonlinear formalism provides
the way to handle problems that involve these two modes of
deformation and to directly obtain the (nonuniversal)
higher order and nonlinear terms of the stress around crack
tips. Finally, combining the geometrical view of fracture
with new methods of solving the nonlinear plane-stress
problem [37] seems to be an excellent framework for
solving systems of interacting cracks, which are extremely
difficult to handle within linearized theories.
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