Observation of the Mass Difference Between Neutral Charm-Meson Eigenstates

R. Aaij et al. (LHCb Collaboration)

(Received 8 June 2021; accepted 8 July 2021; published 7 September 2021)

A measurement of mixing and CP violation in neutral charm mesons is performed using data reconstructed in proton-proton collisions collected by the LHCb experiment from 2016 to 2018, corresponding to an integrated luminosity of 5.4 fb\(^{-1}\). A total of 30.6 million \(D^0 \to K_S^0 \pi^+ \pi^-\) decays are analyzed using a method optimized for the measurement of the mass difference between neutral charm-meson eigenstates. Allowing for CP violation in mixing and in the interference between mixing and decay, the mass and decay-width differences are measured to be \(\Delta m = [3.97 \pm 0.46(\text{stat}) \pm 0.29(\text{syst})] \times 10^{-3}\) and \(\gamma = [5.49 \pm 1.20(\text{stat}) \pm 0.85(\text{syst})] \times 10^{-3}\), respectively. The CP-violating parameters are measured as \(\Delta m = [0.27 \pm 0.18(\text{stat}) \pm 0.01(\text{syst})] \times 10^{-3}\) and \(\gamma = [0.20 \pm 0.36(\text{stat}) \pm 0.13(\text{syst})] \times 10^{-3}\). This is the first observation of a nonzero mass difference in the \(D^0\) meson system, with a significance exceeding seven standard deviations. The data are consistent with CP symmetry and improve existing constraints on the associated parameters.

DOI: 10.1103/PhysRevLett.127.111801

Neutral charm mesons propagating freely can change (oscillate) into their own antiparticles, as the mass eigenstates are linear combinations of the flavor eigenstates. These flavor-changing neutral currents do not occur at tree level in the standard model (SM) and allow for hypothetical particles of arbitrarily high mass to contribute significantly to the process. This can affect the mixing of mesons and antimesons such that measurements of these processes can probe physics beyond the SM [1–4].

The mass eigenstates of charm mesons can be written as \(|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|\bar{D}^0\rangle\), where \(p\) and \(q\) are complex parameters and, in the limit of charge-parity (CP) symmetry, \(|D_1\rangle (|D_2\rangle)\) is defined as the CP even (odd) eigenstate. Mixing of flavor eigenstates is described by the dimensionless parameters \(x \equiv (m_1 - m_2)^2/\Gamma\) and \(y \equiv (\Gamma_1 - \Gamma_2)/(2\Gamma)\), where \(m_{1(2)}\) and \(\Gamma_{1(2)}\) are the mass and decay width of the \(D_{1(2)}\) state, respectively, and \(\Gamma\) is the average decay width \([5]\). In \(D^0 \) and \(\bar{D}^0\) decays to a common final state, \(f\), CP violation in mixing manifests itself if \(|q/p| \neq 1\) or in the interference between mixing and decay if \(\phi_f \neq \arg(q\bar{A}_f/pA_f)\). Here \(A_f\) \((\bar{A}_f)\) denotes the amplitude of the decay process \(D^0 \to f\) \((\bar{D}^0 \to f)\). In the \(D^0 \to K_S^0 \pi^+ \pi^-\) decay studied in this Letter, CP violation in the decay \(\langle |A_f|^2 \neq |\bar{A}_f|^2\rangle\) is not considered, as in the SM it is negligible for the doubly Cabibbo-suppressed (DCS) and Cabibbo-favored (CF) amplitudes contributing to this process. With this assumption, the CP-violating phase is independent of the final state, \(\phi_f \approx \phi \approx [6,7]\).

The current world average of the mixing and CP-violating parameters yields \(x = (3.7 \pm 1.2) \times 10^{-3}\), \(y = (6.8 \pm 0.6) \times 10^{-3}\), \(|q/p| = 0.951^{+0.053}_{-0.042}\), and \(\phi = -0.092^{+0.085}_{-0.079}\) \([8]\). Measurements using decays such as \(D^0 \to K^+ \pi^−\) have resulted in precise measurements of \(y\) and have allowed for the observation of mixing \([9,10]\). However, the data remain marginally compatible with \(x = 0\) and are consistent with CP symmetry. Theoretical predictions for the mixing parameters are of similar magnitude but less precise \([11,12]\), while predictions of the CP-violating phase are around 0.002 \([13]\) and are well below the current experimental precision.

Sensitivity to the mixing and CP-violating parameters is offered by the self-conjugate, multibody \(D^0 \to K_S^0 \pi^+ \pi^-\) decay \([14–18]\). Inclusion of the charge-conjugate process is implied unless stated otherwise. This final state is accessible in both \(D^0\) and \(\bar{D}^0\) decays and leads to interference between the mixing and decay amplitudes, as demonstrated pictorially in Fig. 1. The dynamics of the decay are expressed as a function of two invariant masses following

\[
\begin{align*}
D^0 &\rightarrow f \\
D^0 &\rightarrow f
\end{align*}
\]

FIG. 1. Depiction of the interference of mixing and decay if a \(D^0\) and a \(\bar{D}^0\) meson decay to a common final state \(f\).
the Dalitz-plot formalism, in which a three-body decay is parameterized by a pair of two-body invariant masses [19,20]. The squared invariant mass $m^2(K_s^0\pi^\pm)$ is denoted as m^2_{z} for D^0 decays and m^2_{+} for \bar{D}^0 decays. A mixture of DCS and CF decay amplitudes results in large variations of the strong phase and, with mixing, causes a decay-time evolution of the density of decays across the phase space. A joint analysis of the Dalitz-plot and decay-time distributions may be used to determine the mixing parameters. Splitting the sample by flavor of the charm meson at production probes for CP-violating effects. Usage of multibody decay modes is typically challenging, as it requires knowledge of the variation of the hadronic parameters and excellent control of efficiencies, resolutions, and background effects.

This Letter reports on a measurement of the mixing and CP violation parameters in $D^0 \rightarrow K_s^0\pi^+\pi^-$ decays using the “bin-flip” method [21], a model-independent approach that obviates the need for detailed models of the efficiency, resolution, and contributing amplitudes. Mixing and CP violation are parametrized by z_{CP} and Δz, which are defined by $z_{CP} \pm \Delta z = -(q/p)^{(y+ix)}$. The results are expressed in terms of the CP-even mixing parameters $x_{CP} = -\text{Im}(z_{CP})$ and $y_{CP} = -\text{Re}(z_{CP})$, and of the CP-violating differences $\Delta x = -\text{Im}(\Delta z)$ and $\Delta y = -\text{Re}(\Delta z)$. Conservation of CP symmetry implies $x_{CP} = x$, $y_{CP} = y$, and $\Delta x = \Delta y = 0$. The method has already been employed by the LHCb collaboration, yielding the single most precise measurement of x_{CP} and Δx [18].

In the bin-flip method, data are partitioned into disjoint regions (bins) of the Dalitz plot, which are defined to preserve nearly constant strong-phase differences $\Delta\delta(m^2_{z}, m^2_{+})$ between the D^0 and \bar{D}^0 amplitudes within each bin [22]. Two sets of eight bins are formed symmetrically about the $m^2_{+} = m^2_{z}$ bisector, as illustrated in Fig. 2. The region satisfying $m^2_{+} > m^2_{z}$, which includes regions dominated by the CF $D^0 \rightarrow K^*(892)^{+}\pi^+$ decay, is given a positive index $+b$, while the opposite region, where the relative contribution from decays following an oscillation is enhanced, is given a negative index $-b$. The data are further split into 13 bins of decay time, chosen such that the bins are approximately equally populated. The squared-mass and decay-time resolutions are typically 0.006 GeV2/c4 and 60 fs, respectively, which are smaller than the bin sizes used. Thus, they are neglected and accounted for in the systematic uncertainties.

For each decay-time interval (j), the ratio of the number of decays in each negative Dalitz-plot bin ($-b$) to its positive counterpart ($+b$) is measured. The usage of ratios minimizes the need for precise modeling of the efficiency variation across phase space and decay time. For small mixing parameters and CP-conserving decay amplitudes, the expected ratios for initially produced $D^0 (\bar{D}^0)$ mesons, $R_{bj}^{+} (R_{bj}^{-})$, are [21]

$$ R_{bj}^{\pm} \approx \frac{r_b + r_b \frac{(p^2)}{4} \text{Re}(z^2_{CP} - \Delta z^2) + \frac{(p^2)}{4} |z_{CP} \pm \Delta z|^2 + \sqrt{r_b(t)} \text{Re}\{X_b[z_{CP} \pm \Delta z]\}}{1 + \frac{(p^2)}{4} \text{Re}(z^2_{CP} - \Delta z^2) + r_b \frac{(p^2)}{4} |z_{CP} \pm \Delta z|^2 + \sqrt{r_b(t)} \text{Re}\{X_b[z_{CP} \pm \Delta z]\}}} $$ (1)

The parameter r_b is the value of R_{bj} at $t = 0$, while X_b is the amplitude-weighted strong-phase difference between opposing bins. Finally, $\langle t \rangle_j$ ($\langle t^2 \rangle_j$) corresponds to the average (squared) decay time in each positive Dalitz-plot region where the mixed contribution is negligible, in units of the D^0 lifetime $\tau = \hbar/\Gamma$ [5], calculated directly from background-subtracted data. The other parameters are determined from a simultaneous fit of the observed R_{bj}^{\pm} ratios, in which external information on $c_b \equiv \text{Re}(X_b)$ and $s_b \equiv -\text{Im}(X_b)$ [22,23] is used as a constraint.

Samples of $D^0 \rightarrow K_s^0\pi^+\pi^-$ decays are reconstructed from proton-proton (pp) collisions collected by the LHCb experiment from 2016 to 2018, corresponding to an integrated luminosity of 5.4 fb$^{-1}$. The strong-interaction decay $D^{+} \rightarrow D^0\pi^+$ is used to identify the flavor of the neutral charm meson at production. Throughout this Letter, D^{+} indicates the $D^*(2010)^{+}$ meson and soft pion indicates the pion from its decay. The LHCb detector [24,25] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks.

Decays of $K_S^0 \rightarrow \pi^+\pi^-$ are reconstructed in two different categories, the first involving K_S^0 mesons that decay early enough for the pions to be reconstructed in all tracking detectors and the second containing K_S^0 mesons that decay

![FIG. 2. “Binning” of the $D^0 \rightarrow K_s^0\pi^+\pi^-$ Dalitz plot. Colors indicate the absolute value of the bin index b.](image-url)
later such that track segments of the pions cannot be formed in the vertex detector, which surrounds the pp interaction (primary vertex) region, resulting in a worse momentum resolution. The latter category contains more candidates but has slightly worse mass and decay-time resolution as well as larger efficiency variations.

The online event selection consists of a hardware stage, selecting events based on calorimeter and muon detector information, followed by two software stages. In the first software stage, the pion pair from the \(D^0 \) decay is required to satisfy criteria on momenta and final-state charged-particle displacements from any primary vertex for at least one pion (one-track) or both together with a vertex quality requirement (two-track). The second software stage fully reconstructs \(D^{\pm} \rightarrow D^0\pi^\pm, D^0 \rightarrow K_S^0\pi^+\pi^- \) candidates using further requirements on particle identification, momenta, and track and vertex quality. Specific ranges of displacement and invariant mass are imposed on the reconstructed \(D^0 \) and \(K_S^0 \) candidates. Because of differing efficiencies, the sample is split into four categories, depending on whether or not the \(K_S^0 \) meson is reconstructed in the VELO and whether or not they satisfy the one-track requirement.

Offline, a kinematic fit constrains the tracks to form vertices according to the decay topology, the \(K_S^0 \) candidate mass to the known value [5], and the \(D^{\pm} \) candidate to a primary vertex [26]. In the reconstruction of the Dalitz-plot coordinates, an additional constraint on the \(D^0 \) candidate mass to the known value improves the resolution. Charm mesons originating from the decays of \(b \) hadrons are suppressed by requiring that the \(D^0 \) and soft pion candidates originate from a primary vertex. Candidates are rejected if two of the reconstructed tracks use the same hits in the vertex detector. About 6% of the candidates are from collision events in which multiple candidates are reconstructed, usually by pairing the same \(D^0 \) candidate with different soft pions. When this occurs, one candidate is chosen randomly, and the rest are removed from the sample.

Signal yields are determined by fitting the distribution of the mass difference between the \(D^{\pm} \) and \(D^0 \) candidates, denoted as \(\Delta m \). The signal probability density function is empirically described by a combination of a Johnson \(S_U \) distribution [27] and two Gaussian functions, one of which shares a mean with the Johnson \(S_U \). The background is dominated by real \(D^0 \) decays incorrectly combined with a charged particle not associated with a \(D^{\pm} \) decay, and is modeled with a smooth phase space–like model, \(\theta(\Delta m - m_x)e^{-c(\Delta m - m_x)}(\Delta m - m_x)^\alpha \), where \(\theta(x) \) is the Heaviside step function, \(m_x \) is the charged-pion mass [5], and \(\alpha \) and \(c \) are free parameters. Figure 3 shows the \(\Delta m \) distribution of the entire sample, from which the fit identifies \((30.585 \pm 0.011) \times 10^6 \) signal decays. This represents a factor of 15 larger yield compared to the previous measurement.

To determine the yields used to form the ratios \(R^+_{bj} \), separate fits are performed for each set of Dalitz-plot and decay-time bins \(bj \). The signal model assumes the same parameters for each pair of positive and negative Dalitz-plot bins and fixes some parameters from a fit integrated over decay time. Fits are performed independently for \(D^0 \) and \(\bar{D}^0 \) candidates, as well as for each of the four data subsamples. The measured signal yields are then corrected for two effects that do not cancel in the ratio: experimentally induced correlations between the phase space and decay time and charge-dependent efficiencies (detection asymmetries).

Online requirements on the displacement and momenta of the \(D^0 \) decay products introduce efficiency variations that are correlated between the phase-space coordinates and the \(D^0 \) decay time. The effect depends predominantly on the invariant mass of two pions from the \(D^0 \) decay, with the efficiency to reconstruct the candidates at low values decreasing significantly at low \(D^0 \) decay times. This can bias the measured yield ratios and produce mixing-like trends. To remove this bias, an approach that estimates the relative efficiencies using data is developed. The Dalitz plot is divided into small, rectangular-like regions formed symmetrically across the bisector. Note that these include the portions above and below the bisector, unlike the bins shown in Fig. 2. In the limit of \(CP \) symmetry, the contribution of mixing to such symmetric regions depends only on \(y_{CP} \) and the hadronic parameters of the \(D^0 \) decay [21]. As oscillations result in a migration of decays from one side of the Dalitz plot to the other, and the regions are symmetric with respect to the bisector, there is no effect from \(x_{CP} \). Given a set of inputs for \(y_{CP} \) and the hadronic parameters, the contribution of mixing to the decay-time distributions of these regions can be accounted for, such that the remaining differences between regions come from

![LHCb Data and fit](image-url)
the efficiency correlations. Relative efficiency maps that align the decay-time distributions in all these symmetric regions can then be calculated. Per-candidate weights assigned by the efficiency maps are integrated over the data in each bin using the sPlot method [28] with Δm as the discriminating variable. This provides correction factors for each of the fitted signal yields.

In calculating the efficiency maps, the strong phase variation within a Dalitz-plot bin is approximated as constant, such that it can be described by the external inputs (s_b). As y_{CP} and s_b are parameters of the fit, the correction maps and corresponding correction factors are calculated for a range of values. The smallness of mixing results in smooth variations of the correction factors for a given Dalitz-plot bin, which allows for precise interpolation between the calculated points with polynomials. These polynomials are then incorporated into the fit as a correction that depends on y_{CP} and s_b. The correction is calculated for each yield ratio but is averaged over the initial flavor of the candidates. The procedure has been validated with pseudoexperiments and a systematic uncertainty is assigned due to the approximation that s_b is constant within a bin.

Corrections are also applied to take into account detection asymmetries. Because of utilizing ratios of yields, the analysis is insensitive to detection asymmetries of the K^0_S sample, as well as the soft pion used to tag the flavor of the candidate. However, the kinematics of the pions produced in the D^0 decay depend on the Dalitz-plot coordinate and D^0 flavor. This can result in asymmetric efficiency variations for D^0 and \bar{D}^0 candidates that imitate CP violation. The two-track $\pi^+\pi^-$ asymmetry, $A_{\text{det}}(\pi^+\pi^-)$, is determined by measuring detection asymmetries in control samples of $D_s^+ \rightarrow \pi^+\pi^+\pi^-$ and $D_s^+ \rightarrow \phi\pi^+$ decays, in which the ϕ meson is reconstructed through a K^+K^- pair. A randomly chosen π^+ in the $D_s^+ \rightarrow \pi^+\pi^-\pi^-$ decay is paired with the π^- to form a proxy for the $\pi^+\pi^-$ pair of interest. The $D_s^+ \rightarrow \phi\pi^+$ sample is used to cancel asymmetries induced from the remaining π^+, $A_{\text{det}}(\pi^+)$, and other sources, such as the trigger selection, $A_{\text{trigger}}(D_s^+)$, and the production of D_s^+ and D_s^- mesons in pp collisions, $A_{\text{prod}}(D_s^+)$. For asymmetries of $O(1\%)$, the raw asymmetries A_{meas} can be approximated as

$$A_{\text{meas}}(D_s^+ \rightarrow \pi^+\pi^+\pi^-) \approx A_{\text{det}}(\pi^+\pi^-) + A_{\text{det}}(\pi^+) + A_{\text{prod}}(D_s^+) + A_{\text{trigger}}(D_s^+),$$

$$A_{\text{meas}}(D_s^+ \rightarrow \phi\pi^+) \approx A_{\text{det}}(\pi^+) + A_{\text{prod}}(D_s^+) + A_{\text{trigger}}(D_s^+).$$

The difference of the two measured asymmetries gives the detection asymmetry of the $\pi^+\pi^-$ pair. The control samples are weighted to match the kinematics of the pions from the $D^0 \rightarrow K^0_S\pi^+\pi^-$ sample. This weighting is done separately for each Dalitz-plot bin. The detection asymmetries are of the order of 10^{-3} and are used as corrections to the measured yields. They are included as constraints in the fit along with the associated covariance matrix ΔV_{asym} describing uncertainties coming from the limited size of the calibration samples.

The mixing parameters are determined by minimizing a least-squares function

$$\chi^2 = \sum_{\text{bins}} \sum_{b,b'} \left[\frac{N_{b,b'} - R_{b,b'}^{+} R_{b,b'}^{-} (C_{b,b'}(1 \pm \Delta A_b))}{\sigma_{b,b'}^2} \right]^2,$$

$$+ \sum_{b,b'} (X_{b,b'}^{\text{EXT}} - X_{b,b'}^{\text{asym}}) (C_{b,b'}^{\text{EXT}} - C_{b,b'}^{\text{asym}}),$$

where the yields N and their measured uncertainties σ are scaled by factors for the correction removal, $C_{b,b'}$, and detection asymmetry correction, $\Delta A_b^{\text{asym}} = A_{\text{det}}(\pi^+\pi^-) - A_{\text{det}}(\pi^+\pi^-)$. The different subsamples are fitted simultaneously, separated between D^0 and \bar{D}^0 flavors denoted as $+$ and $-$, including all decay-time intervals j and Dalitz-plot bins b. The parameters $X_{b,b'}$ are constrained with a Gaussian penalty term using the values $X_{b,b'}^{\text{EXT}}$ and covariance matrix V_{EXT} from a combination of CLEO and BESIII measurements [22,23]. In the fit, the parameters r_b are determined independently for each subsample, as they are affected by the sample-specific variation of the efficiency over the Dalitz plot [21]. To avoid experimenter’s bias, the values of x_{CP}, y_{CP}, Δx, and Δy were not examined until the full procedure had been finalized. Figure 4 shows the yield ratios with fit projections overlaid for each of the eight Dalitz-plot bins. Deviations from constant values are due to mixing. The fit projection when x_{CP} is fixed to zero is also included and shows the inability of a nonzero y_{CP} value to produce the deviations on its own. Also shown are the differences of ratios between D^0 and \bar{D}^0 decays, where a significant slope would indicate CP violation.

Systematic uncertainties are assessed from ensembles of pseudoexperiments. These use the $D^0 \rightarrow K^0_S\pi^+\pi^-$ model of Ref. [29] to describe the amplitude at $t = 0$, and the decay-time dependence is incorporated for a range of values of the mixing and CP violation parameters. Different sources of systematic uncertainty are included and the effect on the measured parameters evaluated [30]. The dominant systematic uncertainty on the mixing parameters comes from reconstruction and selection effects and amounts to 0.20×10^{-3} for x_{CP} (y_{CP}). This includes neglecting the decay-time and m_{π^+} resolutions and efficiencies, as well as the correction to remove the efficiency correlations. The most important effect for y_{CP} is the approximation of the strong phase to be constant within each bin in the procedure to remove correlations. Contamination from b-hadron...
FIG. 4. (Top) CP-averaged yield ratios and (bottom) differences of D^0 and \bar{D}^0 yield ratios as a function of t/τ, shown for each Dalitz-plot bin with fit projections overlaid.
decays contributes 0.20×10^{-3} (0.15×10^{-3}) to the x_{CP} (y_{CP}) uncertainty. Potential mismodeling in the signal yield fits contributes 0.36×10^{-3} to the y_{CP} uncertainty. Time-dependent detection asymmetries are present mainly in bins that give the best sensitivity to Δy, resulting in a systematic uncertainty of 0.12×10^{-3}.

The consistency of the results is tested by repeating the analysis in subsets of the data, divided according to magnet polarity, trigger and K_S^0 category, data-taking period, D^{+} meson kinematics, and other categories. The largest variation occurs for the value of x_{CP} as a function of D^{+} meson pseudorapidity, where the compatibility, considering statistical uncertainties only, amounts to a p-value of 1.5%, depending on the details of the sample split, whereas the overall p-value for all x_{CP} observed variations is above 8%. The observed variations of the observables x_{CP}, y_{CP}, Δx, and Δy are all consistent with statistical fluctuations.

The mixing and CP violation parameters are measured to be

\[
x_{CP} = (3.97 \pm 0.46 \pm 0.29) \times 10^{-3},
\]
\[
y_{CP} = (4.59 \pm 1.20 \pm 0.85) \times 10^{-3},
\]
\[
\Delta x = (-0.27 \pm 0.18 \pm 0.01) \times 10^{-3},
\]
\[
\Delta y = (0.20 \pm 0.36 \pm 0.13) \times 10^{-3},
\]

where the first uncertainty is statistical and the second systematic [30]. The statistical uncertainty contains a subleading component due to the limited precision of the external measurements of the strong phases and control samples used for the detection asymmetry. This amounts to approximately $(0.23, 0.66, 0.04, and 0.08) \times 10^{-3}$ for x_{CP}, y_{CP}, Δx, and Δy, respectively. The measurements are statistically limited, though the systematic uncertainty on y_{CP} is comparable to the statistical uncertainty. The results are used to form a likelihood function of x, y, $|q/p|$, and ϕ using a likelihood-ratio ordering that assumes the observed correlations to be independent of the true parameter values [30,31]. The best fit point is

\[
x = (3.98^{+0.56}_{-0.54}) \times 10^{-3},
\]
\[
y = (4.6^{+1.5}_{-1.4}) \times 10^{-3},
\]
\[
|q/p| = 0.996 \pm 0.052,
\]
\[
\phi = 0.056^{+0.047}_{-0.045}.
\]

In summary, a measurement of mixing and CP violation in $D^0 \to K^0_S \pi^+ \pi^-$ decays has been performed with the bin-flip method, using pp collision data collected by the LHCb experiment and corresponding to an integrated luminosity of 5.4 fb^{-1}. This resulted in the first observation of a nonzero value of the mass difference x of neutral charm meson mass eigenstates with a significance of more than seven standard deviations, and significantly improves limits on mixing-induced CP violation in the charm sector.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ, andFINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); Institut de Fzica Atomica (MEN/IFA) Romania; MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); and DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland), and NERSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from ARC and ARDC (Australia); AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, IPhU and Labex P2IO, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities, and Sci. & Tech. Program of Guangzhou (China); RBFR, RSF, and Yandex LLC (Russia); GVA, XuntaGal, and GENCAT (Spain); and the Leverhulme Trust, the Royal Society, and UKRI (United Kingdom).

[14] D. M. Asner et al. (CLEO Collaboration), Search for $D^0-\bar{D}^0$ mixing in the Dalitz plot analysis of $D^0 \rightarrow K_S^0\pi^+\pi^-$, Phys. Rev. D 72, 012001 (2005).

[15] T. Peng et al. (Belle Collaboration), Measurement of $D^0-\bar{D}^0$ mixing and search for indirect CP violation using $D^0 \rightarrow K_S^0\pi^+\pi^-$ decays, Phys. Rev. D 89, 091103 (2014).

[16] P. del Amo Sanchez et al. (Babar Collaboration), Measurement of $D^0-\bar{D}^0$ Mixing Parameters using $D^0 \rightarrow K_S^0\pi^+\pi^-$ and $D^0 \rightarrow K_S^0K^+K^-$ Decays, Phys. Rev. Lett. 105, 081803 (2010).

[17] R. Aaij et al. (LHCb Collaboration), Model-independent measurement of mixing parameters in $D^0 \rightarrow K_S^0\pi^+\pi^-$ decays, J. High Energy Phys. 04 (2016) 033.

[22] J. Libby et al. (CLEO Collaboration), Model-independent determination of the strong-phase difference between D^0 and $\bar{D}^0 \rightarrow K_S^0 h^+h^- (h = \pi, K)$ and its impact on the measurement of the CKM angle γ/ϕ_3, Phys. Rev. D 82, 112006 (2010).

[23] M. Ablikim et al. (BESIII Collaboration), Model-independent determination of the relative strong-phase difference between D^0 and $\bar{D}^0 \rightarrow K_S^0 \pi^+\pi^-$ and its impact on the measurement of the CKM angle γ/ϕ_3, Phys. Rev. D 101, 112002 (2020).

[29] I. Adachi et al. (BABAR Collaboration, Belle Collaboration), First Evidence for cos 2$\beta > 0$ and Resolution of the CKM Unitarity Triangle Ambiguity by a Time-Dependent Dalitz Plot Analysis of $B^0 \rightarrow D^{(*)+}h^0$ with $D \rightarrow K_S^0\pi^+\pi^-$ Decays, Phys. Rev. Lett. 121, 261801 (2018).

[31] R. Aaij et al. (LHCb Collaboration), Measurement of the CKM angle γ from a combination of $B^\pm \rightarrow Dh^\mp$ analyses, Phys. Lett. B 726, 151 (2013).
(LHCb Collaboration)

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4Institute Of High Energy Physics (IHEP), Beijing, China
5School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
6University of Chinese Academy of Sciences, Beijing, China
7Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
8Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
9Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
10Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
11Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
12Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
13LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
14F. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
15Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
16Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
17Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
18School of Physics, University College Dublin, Dublin, Ireland
19INFN Sezione di Bari, Bari, Italy
20INFN Sezione di Bologna, Bologna, Italy
21INFN Sezione di Ferrara, Ferrara, Italy
22INFN Sezione di Firenze, Firenze, Italy
23INFN Laboratori Nazionali di Frascati, Frascati, Italy
24INFN Sezione di Genova, Genova, Italy
25INFN Sezione di Milano, Milano, Italy
26INFN Sezione di Milano-Bicocca, Milano, Italy
27INFN Sezione di Cagliari, Monserrato, Italy
28Università degli Studi di Padova, Universita e INFN, Padova, Padova, Italy
29INFN Sezione di Pisa, Pisa, Italy
30INFN Sezione di Roma La Sapienza, Roma, Italy
31INFN Sezione di Roma Tor Vergata, Roma, Italy
32Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
33Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
34AGH—University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
35Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
36National Center for Nuclear Research (NCBJ), Warsaw, Poland
37Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
38Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
39Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
40Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
41Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia
42Yandex School of Data Analysis, Moscow, Russia
43Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
85\textit{DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain}
\textit{(associated with ICCUB, Universitat de Barcelona, Barcelona, Spain)}
86\textit{University of Michigan, Ann Arbor, MI, USA}
\textit{(associated with Syracuse University, Syracuse, New York, USA)}

aAlso at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
bAlso at Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China.
cAlso at Università di Bari, Bari, Italy.
dAlso at Università di Bologna, Bologna, Italy.
eAlso at Università di Cagliari, Cagliari, Italy.
fAlso at Università di Ferrara, Ferrara, Italy.
gAlso at Università di Firenze, Firenze, Italy.
hAlso at Università di Genova, Genova, Italy.
iAlso at Università degli Studi di Milano, Milano, Italy.
jAlso at Università di Milano Bicocca, Milano, Italy.
kAlso at Università di Modena e Reggio Emilia, Modena, Italy.
lAlso at Università di Padova, Padova, Italy.
mAlso at Scuola Normale Superiore, Pisa, Italy.
nAlso at Università di Pisa, Pisa, Italy.
oAlso at Università della Basilicata, Potenza, Italy.
pAlso at Università di Roma Tor Vergata, Roma, Italy.
qAlso at Università di Siena, Siena, Italy.
rAlso at Università di Urbino, Urbino, Italy.
sAlso at MSU-Iligan Institute of Technology (MSU-IIT), Iligan, Philippines.
tAlso at AGH-University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
uAlso at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
vAlso at Novosibirsk State University, Novosibirsk, Russia.
wAlso at Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
xAlso at Hanoi University of Science, Hanoi, Vietnam.