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The formation of topological defects in continuous phase transitions is driven by the Kibble-Zurek
mechanism. Here we study the formation of single- and half-quantum vortices during transition to the polar
phase of 3He in the presence of a symmetry-breaking bias provided by the applied magnetic field. We find
that vortex formation is suppressed exponentially when the length scale associated with the bias field
becomes smaller than the Kibble-Zurek length. We thus demonstrate an experimentally feasible shortcut to
adiabaticity—an important aspect for further understanding of phase transitions as well as for engineering
applications such as quantum computers or simulators.
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In continuous phase transitions, random local choice of
the symmetry-breaking order parameter leads to the for-
mation of topological defects, such as quantized vortices.
Originally a speculation in high-energy physics and cos-
mology [1], this mechanism, known as the Kibble-Zurek
mechanism (KZM) [2–6], is now a cornerstone of out-of-
equilibrium condensed matter physics. KZM has been
observed in a range of systems such as superfluids,
superconductors, and Bose condensates [7,8]. In the
KZM scenario the transition takes place independently
in various regions with the characteristic size depending on
the transition rate. Each region inherits a random realization
of the broken-symmetry feature of the new phase, such as
the phase of the order parameter in a superfluid transition.
When the expanding regions merge, topological defects,
such as quantized vortices, are formed. The predicted
power-law dependence of the defect density on the quench
rate has been confirmed in superfluid helium [9,10] as well
as in other systems (see, e.g., [7,8,11]).
In the theory of broken-symmetry phase transitions,

a symmetry-violating bias field plays an important role,
initiating the choice between the different degenerate states
[12]. Bias can in particular be applied to nonadiabatic
thermodynamic [1,2] or quantum [5] phase transitions that
result in the formation of topological defects via the KZM.
It has been proposed that if the applied symmetry-breaking
bias is sufficiently large, the adiabatic (defect-free) regime
is restored [13]. The crossover from the Kibble-Zurek (KZ)
regime to the adiabatic regime occurs at the characteristic
value of the bias defined by the quench rate. Such crossover
has been analyzed theoretically in a quantum phase
transition in the Ising chain [13,14] and in its classical
counterpart [15]. Generally speaking, the KZM is expected
to be modified in the presence of external factors such as
inhomogeneities [27], or a propagating front of the phase

transition [28]. Applying a bias allows for the external
control of the magnitude of the KZM directly. Controlled
restoration of the adiabatic regime by a symmetry-breaking
bias can be utilized in applications requiring delicate and
fast control of engineered quantum systems [13,29].
In this Letter we probe experimentally the use of an

external bias for suppressing the formation of single-
quantum vortices (SQV) and half-quantum vortices
(HQV) [9,30,31] produced by the KZM in the phase
transition from normal 3He to the superfluid polar phase
[32]. We report three central observations: (i) for HQVs
the threshold bias for the onset of suppression is set by
matching the characteristic length of the applied symmetry-
breaking field to the Kibble-Zurek length, set by the quench
rate; (ii) beyond the onset, the suppression takes over
exponentially, with the onset threshold normalizing the bias
field in the exponent; and (iii) the creation of SQVs is
similarly suppressed for increasing bias fields while the
threshold value is different from that for HQVs.
The spectrum of topological defects in the polar phase

and the bias fields one can apply are understood in terms of
the order parameter of the polar phase:

Ajβ ¼ ΔPd̂jm̂βeiΦ: ð1Þ

Here ΔP is the maximum gap in the quasiparticle energy
spectrum, and Φ is the superfluid phase. The unit vector d̂
determines the direction of the easy plane of the magnetic
anisotropy and m̂ that of the orbital anisotropy. The
anisotropy originates from p-wave Cooper pairing with
the orbital momentum and spin of a pair equal to 1. In the
p-wave superfluid, confinement modifies the resulting
order parameter [32–38]. The polar phase is stabilized
within the confining nanomaterial, which consists of nearly
parallel solid strands, and m̂ is pinned along the strand
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direction, as shown in Fig. 1(a). The direction of d̂ is set
by the competition between the magnetic anisotropy energy
χðd̂ ·HÞ2=2 in the magnetic field H, and the spin-orbit
interaction energy gsoðd̂ · m̂Þ2, where χ is the magnetic
susceptibility and gso is the spin-orbit coupling.
In large magnetic fields H2 ≫ H2

so ¼ gsoχ−1, the d̂
vector is kept in the plane perpendicular to H, and the
spin-orbit interaction takes the form

Fso ¼ gsosin2μsin2α; ð2Þ

where μ is the angle between the magnetic field and the m̂
vector and α is the azimuthal angle of d̂ in the plane
perpendicular to the magnetic field (see Fig. 1). For μ ≠ 0,
the spin-orbit interaction in Eq. (2) lifts the degeneracy
over α, playing the role of the symmetry-violating bias.
We first study the effect of applying a symmetry-

breaking bias via the spin-orbit coupling. For a magnetic

field oriented along the strands μ ¼ 0, the spin-orbit bias is
absent and the symmetry-breaking scheme (ignoring SO(2)
orbital rotations about m̂) is

G ¼ Uð1Þ × SOð2Þ → ϒ ¼ Z2: ð3Þ

HereG describes the symmetries of normal 3He, U(1) is the
symmetry under the phase transformation, and SO(2) is the
symmetry under rotation in spin space about the axis of
the magnetic field. ϒ denotes the symmetry of the polar
phase order parameter, where Z2 is the spin rotation by π
(corresponding to the change d̂ → −d̂) accompanied by the
phase change by π. Since the homotopy group π1ðG=ϒÞ ¼
Z × Z × Z2, this symmetry-breaking scheme leads to three
types of topological defects: SQVs in the superfluid phase
(Φ field); spin vortices in the orientation of the spin
anisotropy vector (α field); and HQVs, where both the
superfluid phase Φ and the angle of the spin anisotropy
vector α change by π.
When the spin-orbit interaction is turned on (μ ≠ 0), the

SO(2) symmetry in Eq. (3) is explicitly violated, and one
obtains the following symmetry-breaking scheme:

G̃ ¼ Uð1Þ → ϒ̃ ¼ 1 ð4Þ

Now the homotopy group is π1ðG̃=ϒ̃Þ ¼ Z, which
means that only SQVs remain stable, since they are not
influenced by the spin-orbit interaction. Spin vortices and
HQVs become termination lines of topological solitons
[9,30,40–42], as illustrated in Fig. 1(b). Assuming only
HQVs are present, d̂ solitons connect pairs of HQVs of the
opposite d̂ winding.
The presence of the solitons can be detected and their

total volume in the sample measured using the nuclear
magnetic resonance (NMR) techniques. The bulk of
the sample forms the main peak in the continuous-wave
NMR spectrum at the frequency ωmain (see Fig. S1 in
Supplemental Material, Ref. [15]). The d̂ soliton provides a
trapping potential for standing spin waves, seen as a
satellite peak in the NMR spectrum at the frequency
ωsat [9]. The relative sizes of the main peak and the satellite
are determined by the volume occupied by the d̂ solitons in
the sample. We note that the vortices created by the KZM
are randomly oriented, but in our case the vortex density is
low and thus the soliton volume connecting two HQVs is
simply defined by the intervortex distance [15]. Measuring
the initial density of KZ defects has traditionally been
difficult due to the fast annihilation of nonequilibrium
defects at temperatures close to the phase transition
[3,4,10,43]. In our experiments the confining strands pin
vortices in place [9,30,41], providing the observer a
frozen window to the out-of-equilibrium physics of the
phase transition and a direct measurement of the KZ
vortex density.

(a) (b)

FIG. 1. Experimental principles. (a) The cubic 4 × 4 × 4 mm3

sample container is surrounded by NMR coils and filled with solid
strands oriented along the vertical axis with the average diameter
d1 ¼ 9 nm [39] and average separation d2 ≈ 35 nm. The space
between the strands is filled with liquid 3He. The magnetic field
Hkẑ can be applied in any direction in the plane transverse to the
NMR coil axes (angle μ is represented by the light red sector). The
orbital anisotropy vector m̂ is pinned along the confining strands,
and the spin anisotropy vector d̂ is locked to the xy plane (light
blue sector represents angle α) by H. The sample can be rotated
about the vertical axis with the angular velocity Ω up to 3 rad s−1.
(b) The arrows represent the winding of d̂ by angle α (highlighted
by the arrow colors) in the vicinity of two HQV cores (green
cylinders). On a loop around an HQV core the d̂ vector rotates by
π. For a large applied bias (top) pairs of HQVs are connected by
narrow d̂ solitons (highlighted with the background color) and the
width of the soliton, giving the characteristic length scale of the
applied bias field ξbias, is much smaller than the KZ length,
ξbias ≪ lKZ, resulting in suppression of the HQV formation in the
phase transition to the superfluid phase. For a vanishing bias
(bottom) ξbias ≫ lKZ, the winding of the d̂ vector is nearly uniform,
and formation of HQVs in the phase transition is not suppressed.
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We calibrate the size of the satellite peak by preparing a
state by a very slow cooldown through the critical temper-
ature Tc at H ¼ 0 while the sample is in rotation. This way
we create HQVs with aerial density nv ¼ 4Ωκ−1, where Ω
is the angular velocity, κ ¼ h=ð2m3Þ is the quantum of
circulation, h is the Planck constant, andm3 is the 3He atom
mass. The calibration gives the relative satellite size
Isat ¼ I0

ffiffiffiffi
Ω

p
, where I0 ¼ 0.090 s1=2 rad−1=2 [15]. The

intervortex distance assuming a square lattice is

L ¼ n−1=2v ¼ 1

2

ffiffiffi
κ

p I0
Isat

: ð5Þ

We also use this relation to calculate the HQV density and
intervortex distance for HQVs created purely by the KZM
(i.e., for Ω ¼ 0). The combined effect of rotation and KZM
is discussed in the Supplemental Material, Ref. [15].
We control the spin-orbit bias by applying a fixed

magnetic field of H ¼ 11 mT with transverse component
H⊥ ¼ H sin μ during the cooldown through Tc. We repeat
cooldowns for different H⊥ and different cooldown rates,
as shown in Fig. 2. We observe a constant satellite size for
small H⊥ and its gradual suppression for larger values
of H⊥. We suggest that the threshold field H⊥t where the
suppression of the formation of HQVs starts is determined
by comparing the Kibble-Zurek length lKZ¼aξ0ðτQ=τ0Þ1=4
with the characteristic length of the bias, ξbias, given by the
thickness of the d̂ solitons. Here a ∼ 1 fixes the exact length
scale for the defect formation (in our measurements a ≈ 2.3
[15]), the quench rate is τ−1Q ¼ −dðT=TcÞ=dtjT¼Tc

, where T
is temperature, t is time, ξ0 is the superfluid coherence
length at low temperature, τ0 ¼ ξ0v−1F ∼ 1 ns is the order
parameter relaxation time, vF is the Fermi velocity,
ξbias ∼ ξso= sin μ, and ξso ¼ 17 μm is the dipole length [9].
Equating lKZ with ξbias gives the following threshold bias

for the suppression of HQV creation:

H⊥t ¼
ξso
lKZ

H: ð6Þ

In the spirit of Ref. [13] we propose that the defect density
∝ I2sat decays exponentially after the transition field. In
terms of the satellite intensity, this reads as

Isat ¼
�
Isat0 for H⊥ < H⊥t

Isat0 exp ð1 −H⊥=H⊥tÞ for H⊥ ≥ H⊥t;
ð7Þ

where Isat0 is the initial satellite intensity. We note that
for this model

R
∞
0 IsatdH⊥ ¼ 2Isat0H⊥t and the numerical

integral of the measured Isat can be used to determine H⊥t
without fitting.
Our experiments, as shown in Fig. 2, confirm thevalidity of

themodel in Eq. (7).We use the zero-bias intervortex distance
LjH⊥¼0, Eq. (5), as the measured value of lKZ [9,43,44].

We emphasize that the threshold field H⊥t, which also
normalizes the exponent, is determined by integration of
the experimental data without a fitting procedure. The result
agrees well with the conjecture ξt ≡ ξbiasðH⊥tÞ ¼ lKZ.
The result for the slowest quench rate deviates, however,

from this dependence. In the presence of a thermal gradient,
the phase transition proceeds via a propagating front,
where the ordering of the low-temperature phase lags
behind the temperature front where T ¼ Tc by distance
lF. The KZM operates in the band of width lF and is
modified in comparison to the homogeneous cooling
scenario [28,45,46]. As τQ increases, lF decreases and
lKZ increases. We suggest that the smaller of the two
characteristic lengths lKZ and lF determines the threshold
bias ξt. We estimate that in our measurement lF < lKZ only
for the slowest quench rate (black diamonds in Fig. 2) for
which lF ∼ 210 μm (gray patterned diamond in Fig. 2,
inset), matching the observed value of ξt [15].
Alternatively we can apply a direct field bias with a

weak magnetic field oriented perpendicular to m̂. The small
magnetic field H⊥ < Hso violates the symmetry under

FIG. 2. Suppression of the HQV density created by the KZM
as a function of the applied bias. Filled red circles, magenta
triangles, and black diamonds correspond to quench rates of
τQ ≈ 3.8 × 102 s, τQ ≈ 1.4 × 103 s, and τQ ≈ 7.7 × 103 s, re-
spectively, while applying a constant H ¼ 11 mT magnetic field.
The field is rotated to achieve different bias fields H⊥ ¼ H sin μ.
Open blue squares (τQ ≈ 6.0 × 102 s) correspond to measure-
ments with zero axial field component, H⊥ ¼ H. Vortex density
is constant for H⊥ < H⊥t and suppressed for higher bias fields.
The suppression starts when the characteristic length scale of the
bias field ξbiasðH⊥Þ becomes smaller than the relevant Kibble-
Zurek length. Solid lines correspond to theoretical model (see text
for details). The dashed line shows where the intervotex distance
becomes comparable with the container size. The inset shows the
extracted threshold bias length ξt as a function of lKZ with the
same symbols. The dashed line is ξt ¼ lKZ. The patterned gray
diamond is the same measurement as the black diamond, but with
lKZ on the horizontal axis replaced with an estimation of the
transition front thickness lF [15]. For other measurements, lF lies
beyond the right border of the plot.
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rotation about m̂, which leads to the formation of
solitons, absent at zero magnetic field, with the soliton
thickness now determined by the magnetic field directly,
ξbias ¼ ξH ¼ ξsoHso=H. Equating ξbias with lKZ yields a
criterion for the threshold field similar to that in Eq. (6)
but with H replaced by Hso. The expected decrease of the
threshold field in this case is Hso=H ¼ ΩP=ωmain ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − ωsat=ωmainÞ

p
≈ 0.17 [9], where ΩP is the polar

phase Leggett frequency. It is confirmed experimentally
by the blue squares in Fig. 2. Here the ratio of the threshold
field relative to the red circles, which correspond to the
spin-orbit bias with similar quench rate, is 0.16.
Finally, we study the fate of SQVs under the symmetry-

breaking bias created by tilting the magnetic field. Because
of the absence of the topological solitons one would naïvely
expect that the bias has no effect on the KZM for SQVs.
Without the solitons, SQVs are not seen in continuous-
wave NMR, but they were found to increase the relaxation
rate of a magnon Bose-Einstein condensate (BEC) [41,47].
Independent measurements with SQVs created by rotation
indicate that the BEC relaxation rate increases monoton-
ically when the SQV density grows [41]. In our measure-
ments we create both HQVs and SQVs by the KZM and
subtract the effect of HQVs by using a calibration of
the relaxation rate of the magnon BEC with respect to the
satellite intensity [see Fig. 3(b) from Ref. [41] ]. The
remaining contribution to the relaxation we attribute to
SQVs. This contribution shows the characteristic depend-
ence with a threshold and exponential suppression akin to
Eq. (7), as shown in Fig. 3. A possible explanation for this
behavior is that an applied bias influences the structure of
the vortex core. For example in the superfluid B phase, the
SO(2) symmetry of the SQV core is spontaneously broken
at low temperatures, and the core transforms into a pair of
tightly bound half-quantum cores [48–50]. In the polar
phase, the spin-orbit interaction and magnetic anisotropy
may play the role of the symmetry-violating bias for the
phase transitions inside the vortex core, but the detailed
investigation remains a task for the future.
In conclusion, we report a crossover from the Kibble-

Zurek regime of HQV creation to the adiabatic regime,
where vortex formation is rapidly suppressed by a
symmetry-violating bias. We thus demonstrate an exper-
imentally feasible shortcut to adiabaticity, where the
adiabatic regime can be reached without an infinitely slow
transition rate. In our experiments the symmetry-violating
bias is provided either by the spin-orbit interaction or
directly by external magnetic field. The crossover to the
adiabatic regime takes place when the characteristic length
scale of the bias, given by the thickness of the topological
solitons connecting neighboring HQVs, becomes smaller
than the Kibble-Zurek length determined by the transition
rate or the thickness of the transition front in the case
of slow inhomogeneous cooling. Beyond the onset, the
suppression of the KZM takes place exponentially. We also

report similar suppression of SQV formation by the
KZM, indicating that there may be a symmetry-breaking
transition in the SQV core, sensitive to the symmetry-
violating external bias.
The symmetry-breaking aspect of the bias field is

essential for the suppression of the KZM, which otherwise
is very robust. As an example [15], we show that adding an
array of HQVs created by rotating the sample has no effect
on the KZM even when the characteristic length scale of the
added lattice becomes smaller than the Kibble-Zurek
length. We also note that HQVs are composite defects,
whose KZM formation is rarely studied experimentally,
and that they are analogs of Alice strings [51–53]. The
KZM formation of HQVs studied here may shed light on
defect formation across phase transitions in theories con-
sidering such systems.
Our results can be generalized to the bias-induced

restoration of adiabadicity in various phase transitions
including quantum phase transitions, which could provide
applications for technologies such as quantum simulators
and computers [13,29]. On a more speculative note, it is not
excluded that the bias plays a role in the so-called collapse
of the wave function in quantum mechanics. In principle,
the latter can be seen as “phase transition” occurring in the
continuous spectrum of an infinite system [54–56]. One of
the many quantum states participating in a given quantum

FIG. 3. Suppression of SQV density as a function of the applied
bias. The measured magnon BEC relaxation rate (magenta
diamonds) includes contributions from HQVs and SQVs. The
HQV contribution (red circles) is separated using linear NMR
measurements of the satellite intensity and calibration from
Ref. [41]. The remaining contribution to relaxation (blue tri-
angles) we attribute to SQVs. The observed relaxation rates are
compared with the suppression model [solid lines, Eq. (7)], and
the red line corresponds to the same threshold as in Fig. 2. In
these measurements the quench rate is τQ ∼ 4 × 102 s, and the
magnitude of the magnetic field is kept constant while its
direction is varied. The largest transverse field value corresponds
to μ ¼ π=2. Constant BEC relaxation rate not related to vortices
has been subtracted.
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superposition is perhaps then selected by the infinitesimal
bias unavoidably present in any experiment.
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Note added in the proof.—A recent experimental inves-
tigation [57] studies the saturated regime of defect density
in a rapidly quenched Bose gas, suggesting that in the
saturated regime the initial defect density is determined by
the early time coarsening dynamics of the emerging order
parameter. The study of the combined effect of the
saturation of defect density and an applied bias remains
an interesting topic for the future.
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