
Classical Prethermal Phases of Matter

Andrea Pizzi ,1 Andreas Nunnenkamp ,2 and Johannes Knolle 3,4,5

1Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
2School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems,

University of Nottingham, Nottingham NG7 2RD, United Kingdom
3Department of Physics, Technische Universität München, James-Franck-Straße 1, D-85748 Garching, Germany

4Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
5Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom

(Received 11 May 2021; accepted 10 August 2021; published 27 September 2021)

Systems subject to a high-frequency drive can spend an exponentially long time in a prethermal regime,
in which novel phases of matter with no equilibrium counterpart can be realized. Because of the notorious
computational challenges of quantum many-body systems, numerical investigations in this direction have
remained limited to one spatial dimension, in which long-range interactions have been proven a necessity.
Here, we show that prethermal nonequilibrium phases of matter are not restricted to the quantum domain.
Studying the Hamiltonian dynamics of a large three-dimensional lattice of classical spins, we provide the
first numerical proof of prethermal phases of matter in a system with short-range interactions. Concretely,
we find higher-order as well as fractional discrete time crystals breaking the time-translational symmetry of
the drive with unexpectedly large integer as well as fractional periods. Our work paves the way toward the
exploration of novel prethermal phenomena by means of classical Hamiltonian dynamics with virtually no
limitations on the system’s geometry or size, and thus with direct implications for experiments.
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Introduction.—In the past few years, a great deal of
attention has been devoted to the realization of novel
phases of matter away from thermal equilibrium. The most
prominent example is that of discrete time crystals (DTCs),
systems that break the discrete time-translational symmetry
of a periodic drive by showing a robust subharmonic
response [1–4]. A major impediment in the quest for
nontrivial nonequilibrium phases of matter has been the
fact that generic many-body systems under a periodic drive
tend to quickly heat up to a featureless infinite-temperature
state. Established loopholes to evade this fate are many-
body localization (MBL) [2–4], infinite-range interactions
[1,5], and dissipation [6,7].
An alternative mechanism to prevent heating has

been more recently put forward: prethermalization [8–14].
According to this phenomenon, when the frequency ω ¼
2π=T of the drive is large, the system remains stuck in a
prethermal regime for an exponentially long time ∼ecω (c
being some constant), before ultimately meeting its heat
death [10,15–18]. In contrast to MBL, prethermalization
requires no disorder and occurs in any dimensionality,
features that make it an excellent candidate for experi-
mental implementation. The only price to pay is a finite
lifetime, which for essentially all current implementations
can nonetheless be tuned orders of magnitude larger than
the achievable coherence times.
Else et al. [11] have shown that such a prethermal regime

can be exploited to realize nontrivial out-of-equilibrium
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FIG. 1. Prethermal discrete time crystals. (a) The system
consists of N ¼ 503 classical spins in a three-dimensional
lattice with nearest-neighbor interactions. (b) Relevant time-
scales of a 4-DTC (for g ¼ 0.25). The prethermalization
timescale τpth ∼ 1=λ is set by the Lyapunov exponent λ.
Thermalization to an infinite-temperature state occurs at a much
later time τth ∼ ecω exponential in the drive frequency ω. Here,
Δ ¼ 0.01. (c) By varying the parameter g, one can access
different higher-order and fractional n-DTCs, each correspond-
ing to a plateau at frequency 1=n in the system’s spectral
response. This is shown by means of the Fourier transform jm̃j
of the magnetization for n ¼ 2, 3, 4 and 20=7.
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phases of matter. The analytical work of Ref. [11] assumes
short-range interactions, for which phenomena like pre-
thermal DTCs require a dimensionality two or three. This in
turn makes the important task of numerically validating the
theory, its assumptions, and limitations, extremely difficult.
Indeed, this has only been possible for a recent generali-
zation to long-range one-dimensional systems [12] and for
relatively small system sizes.
Needless to say, working with small system sizes and in

one dimension represents a major setback for both the
characterization of known collective dynamical phenomena
and the exploration of novel ones. As a striking example,
in one dimension the signatures of higher-order and frac-
tional DTCs only appear at system sizes exceeding by a
factor 2 those in the reach of exact diagonalization (ED)
techniques [19]. For a system of spin 1=2, unlike standard
period doubling DTCs, higher-order and fractional DTCs
are characterized by a robust subharmonic response at
frequency ω=n with integer and possibly even fractional
n > 2. Recently, we have characterized these exotic pre-
thermal nonequilibrium phases of matter in a clean (that is,
nondisordered) long-range one-dimensional quantum spin
system [19].
Interestingly, some recent studies have shown that the

phenomenon of prethermalization is not unique to quantum
systems [20–23], and that the concept of prethermal
Hamiltonian can be extended to the classical setting
[21,23]. This suggests that the picture for prethermal
DTCs drawn in Ref. [11] should generalize to classical
Hamiltonian dynamics, which would tear down the strin-
gent numerical constraint mentioned above, and open the
way to large-scale simulations of these nonequilibrium
collective phenomena.
Here, we show that this is indeed the case. We consider a

clean three-dimensional system of classical spins and show
that it can host prethermal higher-order and fractional DTCs
for short-range (nearest-neighbor) interactions, see Fig. 1.
The resulting Hamiltonian (thus, nondissipative) dynamics
is dominated by two timescales. The first is related to the
prethermalization of the system to an effective Hamiltonian
Heff , that occurs over a timescale τpth ∼ 1=λ, with λ the
Lyapunov exponent independent ofω. The second is related
to the infinite-temperature thermalization, that occurs only
after an exponentially long time τth ∼ ecω. The separation
of timescales leaves room for the realization of prethermal
n-DTCs with various orders n ¼ 2; 3; 4; 20=7 and beyond.
We note that the notion of classical DTCs has also

been adopted with various connotations by previous works
[24–29]. We also emphasize that, in contrast to the well-
known instances of classical synchronization, period
doubling bifurcations, and other related phenomena in
dynamical system theory [30], the focus of our work is
many-body systems undergoing driven but nondissipative
(i.e., noncontractive) dynamics and still evading (up to a
prethermal regime) the fate of ergodicity.

Model.—We consider a simple cubic lattice with N sites,
in which each site r hosts a classical spin Sr ¼ ðSxr ; Syr ; SzrÞ
with jSrj ¼ 1. A remarkably large system size N ¼ 503

ensures results well representative of the thermodynamic
limit (as further supported by a scaling analysis in the
Supplemental Material [31]). The spins are governed by the
following periodic binary Hamiltonian HðtÞ at frequency
ω ¼ 2π=T:

HðtÞ ¼

8>><
>>:

1
6

P
hr;r0i

SzrS
z
r0 þ h

P
r
Szr for 0 ≤ t < T

2

2ωg
P
r
Sxr for T

2
≤ t < T:

ð1Þ

The first part of the Hamiltonian in Eq. (1) accounts for a
nearest-neighbor ZZ interaction together with a longi-
tudinal field of strength h ¼ 0.1, whereas the second part
describes the action of a transverse field of strength 2gω.
The parametrization of the latter has been chosen such that
the rotation around the x axis caused by the transverse field
is equal to 2πg irrespective of ω. For instance, when g is
equal to 0.5, the second part of the Hamiltonian acts as a
π-flip of the spins.
The spin dynamics is given by standard Hamilton

equations of motion _Sαr ¼ fSαr ; HðtÞg, where f…g denotes
Poisson brackets and fSαr ; Sβr0g ¼ δr;r0ϵα;β;γS

γ
r . As noted by

Howell and collaborators for the analog one-dimensional
case [23], the resulting 3N coupled, nonlinear, ordinary
differential equations can be integrated analytically over the
two halves of the drive. Indeed, one finds

SrðnT þ TÞ ¼

0
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1
CASrðnTÞ
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with c1¼ cosðκrT=2Þ, s1 ¼ sin ðκrT=2Þ, c2 ¼ cos 2πg, and
s2 ¼ sin 2πg. The system’s “many-bodyness” is imprinted
in the nonlinearity of the equations, now hidden in the
effective field κr ¼ hþ 1=6

P
r0∈∂r S

z
r0 , with the sum run-

ning over the six nearest neighbors of site r. By iteratively
applying the discrete map in Eq. (2) we can evolve the
system up to remarkably large times ∼107T.
As an initial condition, we consider one in which the spins

are predominantly polarized along the z direction. In spherical
coordinates Sr¼ðsinθrcosϕr;sinθr sinϕr;cosθrÞ, for every
spin Srð0Þ the initial polar and azimuthal angles θrð0Þ and
ϕrð0Þ are drawn at random from a Gaussian distribution with
mean 0 and standard deviation 2πW and from a uniform
distribution between 0 and 2π, respectively. For W ¼ 0 the
spins are perfectly aligned along z and, because of transla-
tional invariance, behave all in the same way, reducing the
system to an effective single-body one. The many-body
character of the system is brought into play scrambling the
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initial conditionwith a finiteW, that canbe thought of as a sort
of initial “temperature.” Henceforth, W ¼ 0.1.
The main observables of interest are the average (over

one period) energy HT ¼ 1=12
P

hrr0i SzrS
z
r0 þ

P
r ðh=2Szrþ

ωgSxr Þ, the magnetization m ¼ 1=N
P

r S
z
r , and its Fourier

transform m̃ðω0Þ¼1=M
P

M−1
n¼0 mðnTÞe−iω0nT . Furthermore,

we probe the hallmark of chaos, sensitivity to the initial
conditions, by introducing a “decorrelator" d that measures
the distance between two initially very close copies of the
system [32,33]. We define

dðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
r

ðSrðtÞ − S0rðtÞÞ2
s

; ð3Þ

where the primed spins refer to a copy of the system
that has been initially slightly perturbed. We consider

θ0rð0Þ ¼ θrð0Þ þ 2πΔδθ;r and ϕ0
rð0Þ ¼ ϕrð0Þ þ 2πΔδϕ;r,

with δθ;r and δϕ;r standard normal random numbers and
Δ ≪ 1 setting the size of the initial perturbation [thus,
dð0Þ]. At infinite temperature, when the spin orientations
are completely random, the decorrelator takes a value d∞ ¼ffiffiffi
2

p
(see Supplemental Material [31]).

Results.—We start by shading light on the zoology of
possible DTCs. To this end, in Fig. 1(c) we plot the
magnetization Fourier transform m̃ðω0Þ as a function of
ω0 and g. A constant-frequency plateau signals a robust
DTC. The plateau frequency ω=n indicates the order n of
the DTC (here, we illustrate the prime cases n ¼ 2, 3, 4 and
20=7), whereas its width signals its stability to perturba-
tions of g [19]. In the remainder of the paper, we focus for
concreteness on the properties of the 4-DTC, obtained
for g ≈ 1=4.
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FIG. 2. Phenomenology of a prethermal 4-DTC. (a) The average energy HT reaches its infinite-temperature value 0 after an
exponentially long time, the signature of prethermalization. (b) A period 4-tupling is observed in the stroboscopic series of the
magnetization m over the whole prethermal regime. (c) The decorrelator initially grows exponentially, d ∼ eλt, signaling sensitivity to
the initial conditions and chaos. After a timescale τpth ∼ 1=λ, it plateaus at a value ∼60%d∞, before ultimately reaching its infinite-

temperature value d∞ ¼ ffiffiffi
2

p
after a time τth ∼ ecω. (d) Spin components Sx;zr over a two-dimensional cut of the system and at

representative times t multiples of 4T, together with the difference Sx;zr − Sx;z0r between the two initially close copies of the system. At
time t ¼ 102T < τpth, the spins are predominantly polarized along z (m > 0) while having disordered x components, and the difference
between the two copies is still small (mostly white). At time τpth ≪ t ¼ 104T ≪ τth the system has prethermalized: while both copies of
the system are still polarized along z, their x and y components have decorrelated. At time t ¼ 4 × 105T ∼ τth, the z polarization is
progressively destroyed by the proliferation of domain walls, en route towards the ultimate heat death with completely random spin
orientations, shown for t ¼ 5 × 106 ≫ τth. Here, ω ¼ 2.86, g ¼ 0.255, and Δ ¼ 0.01.
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To elucidate the phenomenology of prethermalization
and time crystallinity, in Fig. 2 we show the time series of
the observables introduced above. First and foremost,
prethermalization is diagnosed by looking at the average
energy in Fig. 2(a): HT plateaus at a value ∼HTð0Þ over
∼105 decades, before heating ultimately takes it to its
infinite-temperature value 0. Crucially, prethermalization
comes along with the realization of a nontrivial nonequili-
brium phase of matter, the 4-DTC, that can be diagnosed by
looking at the magnetization m in Fig. 2(b). At short times
t=T < 40, a linear axis helps to appreciate the distinctive
stroboscopic dynamics of a 4-DTC: the magnetization
takes values ∼1;0;−1;0;1;0;… at t=T¼0;1;2;3;4;5;…,
thus exhibiting a characteristic frequency ω=4. For
t=T > 40, the logarithmic time axis allows one to assess
the persistence of the subharmonic response over the whole
prethermal regime, before it reaches its infinite-temperature
value 0.
The nature of the prethermal 4-DTC is perhaps even

more strikingly highlighted by the decorrelator d in
Fig. 2(c). At short times, the decorrelator grows exponen-
tially as d ∼ eλt according to a characteristic Lyapunov
exponent λ. This sensitivity to initial conditions is the
signature of chaos, the one-to-one classical correspondent
of quantum thermalization. Rather than directly approach-
ing the infinite-temperature value d∞, however, the decor-
relator plateaus at a value ∼60%d∞ for the whole
prethermal regime.
A deeper understanding of the prethermal 4-DTC is

achieved by looking at the space profiles of the spins
at representative times. To avoid complicated three-
dimensional plots (see Supplemental Material [31]), in
Fig. 2(d) we restrict for clarity to the plane of spins with
lattice indices ðix; iy; 1Þ. We plot the Sx and Sz components
of the spins, together with the respective difference Sx − Sx0
and Sz − Sz0 between the two copies of the system used to
compute the decorrelator d. We identify four main regimes
in the system’s evolution, and consider one representative
time (multiple of 4T) for each: (i) Prethermalization: at
short times t=T ¼ 102 ≪ τpth, the system is thermalizing
towards the prethermal state. Following from the initial
condition, Sz ∼ 1 while Sx ∼�2πW. The two copies are
still close (d ≪ 1; jSx − Sx0j ≪ 2πW, and jSz − Sz0j ≪ 1).
(ii) Prethermal: at intermediate times τpth ≪ t=T ¼ 104 ≪
τth we observe a prethermal 4-DTC. The spins are still
polarized along z, Sz ∼ 1 and Sx ∼�2πW, but chaos has
decorrelated the two initially close copies of the system
(d ∼ 60%d∞, jSx − Sx0j ∼ 2πW). (iii) Thermalization: at
long times t=T ¼ 4 × 105 ∼ τth the 4-DTC is melting:
the spin z polarization is progressively lost with the
nucleation and proliferation of domains with opposite
magnetization. (iv) Thermal: at very long times t=T ¼
5 × 106 > τth the system has reached (or is about to reach)
its infinite-temperature state with completely random spin
orientations and d ≈ d∞.

A closer look at the frequency dependence of the
prethermal 4-DTC is taken in Fig. 3. With a perturbation
Δ ¼ 10−16 saturating machine precision we emphasize
the exponential growth d ∼ eλt at short times. Crucially, the
Lyapunov exponent λ, that quantifies the chaoticness of the
system, and therefore the timescale of the prethermaliza-
tion, only weakly depends on the considered frequencies
(almost no dependence is observed for large enough
frequencies). In striking contrast, the full thermalization
timescale at which d crosses over to d∞ scales exponen-
tially with frequency. To be quantitative, we identify the
prethermalization and thermalization timescales τpth and
τth with the times at which d crosses 10% and 90% of its
infinite-temperature value (marked in red for ω ¼ 3.4). The
different frequency dependence of τpth and τth opens up a
long prethermal window, within which the 4-DTC is stable,
see Fig. 1(b). In the insets we show that analogous scalings
are observed for the average energy HT and magnetization
m measured at stroboscopic times t ¼ 4kT.
Discussion and conclusions.—We investigated prether-

mal phases of matter in a clean system of classical spins on
a cubic lattice with short-range interactions subject to a
periodic drive. Under suitable conditions, a separation of
timescales occurs such that nontrivial prethermal phases
of matter emerge, which we illustrated with a whole range
of higher-order and fractional DTCs. Chaos makes the
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system prethermalize over a timescale τpth ∼ 1=λ, with λ
the Lyapunov exponent that we expect to be associated with
a frequency independent effective Hamiltonian Heff . The
latter could be found in a theory of classical prethermal-
ization [21] extended to prethermal phases of matter [11].
The time τth for the system to then reach the infinite-
temperature state is exponential (or at least nearly expo-
nential [11]) in frequency. An extended and more in-depth
analysis of prethermal DTCs in dimension one, two, and
three and for short- to long-range interactions is provided
in Ref. [34].
In essence, much of the physical intuition for

prethermal DTCs relies on two points [11]: (i) energy
absorption is slow because of the mismatch between
driving frequency and local energy scales and (ii) the
effective prethermal Hamiltonian has a finite-temperature
phase transition higher than that of the initial condition.
This intuition does not rely on any quantum interference
effect (as, by contrast, MBL DTCs do instead [2–4]),
and is in this sense purely classical. And indeed, it
can be shown that a long-range one-dimensional version
of our classical spin model [34] essentially reproduces
all the main features of the prethermal DTCs in the
corresponding quantum models of Refs. [12] and [19].
All this makes us conjecture that prethermal phases
of matter of DTC type can be understood as being robust
to quantum fluctuations rather than dependent on
them. This perspective elevates classical Hamiltonian
many-body systems to a privileged position for the
investigation of novel phenomena in the nonequilibrium
domain.
Indeed, numerical simulations become incomparably

more accessible in the absence of quantum fluctuations,
and the trick used in Eq. (2) of integrating the dynamics
over each period makes them even more efficient [23]. The
constraints on dimensionality and system size are in this
way lifted, which opens the possibility to simulate exper-
imentally relevant settings, beyond the few numerical one-
dimensional examples considering power-law interactions
∼1=rα with rather low exponents α ⪅ 1.5 [12,19]. In
particular, by providing the first simulation of higher-order
DTCs in short-range interacting systems, we have provided
evidence that these exotic nonequilibrium phases of matter
might be much easier to realize in experiments than
expected. We emphasize that no disorder is needed to
guarantee a stable prethermal regime, and that a high-
frequency drive should suffice. We therefore expect that the
rich phenomenology we discussed here might be readily
observable in state-of-the-art experiments, for instance with
nitrogen-vacancy spin impurities in diamond [35], trapped
atomic ions [36], or 31P nuclei in ammonium dihydrogen
phosphate [37]. Higher-order and fractional DTCs offer the
chance to overcome the period-doubling paradigm of MBL
DTCs, opening the way to the realization of an array of new
dynamical phenomena.

As an outlook on future research, it would be insightful
to clarify the exact functional form of τthðωÞ. An important
question regards then the quantitative effects of quantum
fluctuations on our findings. As we argued above, we
expect that the main features of the prethermal DTCs will
not be significantly changed by quantum fluctuations, and
this could for instance be checked with a suitable spin-wave
approximation in higher dimension [19,38]. However,
finding genuine quantum prethermal phases with no
classical counterparts will be a very worthwhile endeavor.
Similarly important will be the exploration of novel
prethermal phases beyond the paradigmatic DTCs.

We thank R. Moessner and H. Zhao for interesting
discussions. We acknowledge support from the Imperial-
TUM flagship partnership. A. P. acknowledges support
from the Royal Society and hospitality at TUM. A. N.
acknowledges a University Research Fellowship from the
Royal Society.

Note added.—Recently we became aware of complemen-
tary work exploring prethermal DTCs in classical spin
systems [39].
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