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Hydrodynamic phenomena can be observed with light thanks to the analogy between quantum gases and
nonlinear optics. In this Letter, we report an experimental study of the superfluid-like properties of light in a
(1þ 1)-dimensional nonlinear optical mesh lattice, where the arrival time of optical pulses plays the role of
a synthetic spatial dimension. A spatially narrow defect at rest is used to excite sound waves in the fluid of
light and measure the sound speed. The critical velocity for superfluidity is probed by looking at the
threshold in the deposited energy by a moving defect, above which the apparent superfluid behavior breaks
down. Our observations establish optical mesh lattices as a promising platform to study fluids of light in
novel regimes of interdisciplinary interest, including non-Hermitian and/or topological physics.
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The last decades have witnessed an impressive develop-
ment of new conceptual links between the apparently
disconnected fields of nonlinear optics and many-body
physics of quantum gases [1]. The formal analogy between
the paraxial light propagation in nonlinear media and the
Gross-Pitaevskii equation of dilute Bose-Einstein conden-
sates was first noticed in the 1970s and immediately
suggested the transfer of concepts such as superfluidity
and quantized vortices to optical systems [2–6]. This
connection was further revived with the experimental
observation of Bose-Einstein condensation in exciton-
polariton gases in semiconductor microcavities [7], which
triggered a strong interest from both theory and experiment
to address basic features of condensates such as super-
fluidity, hydrodynamics, and topological excitations [8–10]
in the new context of fluids of light.
In this work, we introduce a new platform for studying

fluids of light by using classical light in a so-called optical
mesh lattice. The idea is to encode one (or even more
[11,12]) discrete synthetic spatial dimensions in the arrival
time of optical pulses that propagate along coupled optical
fiber loops [13–15]. This allows for the application of
arbitrary dynamical potentials to the fluid of light and for
the measurement of its evolution in real time with key
advantages over traditional systems. In contrast to semi-
conductor microcavities [1], our system provides great
flexibility in the design of different lattice geometries with
no fabrication effort and naturally offers site-resolved
access to the temporal dynamics of the fluid without the
need for sophisticated ultrafast optics tools. In contrast to
bulk nonlinear systems [16–18], the nonlinearity stems
from the power dependent propagation constant of optical
fibers and is thus fully controllable with standard opto-
electronic tools. Although the potential of such optical

mesh lattices for studies of linear and nonlinear optics has
been demonstrated in many works on, e.g., PT-symmetric
physics [12,14,15,19–21] and topological effects [22–25],
here we report their first use as a platform to investigate
fluids of light. In the future, it will be of great interest to
further exploit the flexibility of optical mesh lattices to
study fluids of light in topological and/or non-Hermitian
regimes that are not straightforwardly realized in standard
platforms, e.g., combining interactions with synthetic
magnetic fields, topological lattices [26], and complex
gain and loss distributions [27,28].
The experimental setup and the theoretical model.—In

our experiments, an optical mesh lattice is realized using a
time-multiplexing scheme based on two optical fiber loops
of average length L̄ ¼ 4 km, which have a small length
difference δL ¼ 50 m and which are coupled by a 50=50
beam splitter, as shown in Fig. 1(a). A light pulse injected
into one loop is split by the coupler into two pulses: one
circulating in the longer and one in the shorter loop. After a
round-trip, the two pulses arrive back at the coupler but
now with a relative time delay due to the small length
difference between the loops. Each pulse is again split into
two by the beam splitter, which, after many round-trips,
eventually leads to the generation of a pulse train over time,
as reviewed in the Supplemental Material [29].
There is a clear separation of timescales between the

average round-trip time T̄ and the relative time delay ΔT as
T̄ ≫ ΔT. Thus, for not too many round-tripsm (mΔT < T̄)
the arrival time of each pulse at the beam splitter can be
unambiguously expanded as t ¼ mT̄ þ nΔT=2, where the
integer m denotes the total number of round-trips for each
pulse and the integer n counts how many more round-trips
were made in the long rather than in the short loop [29]. As
the light propagates, the assigned integer m keeps
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increasing to count each successive round-trip, while the
integer n increases or decreases by one after each round-trip
depending on which loop is traversed. The integer m is
interpreted as a discrete time step, and n as a discrete
position index along a “synthetic spatial dimension,”
leading to the effective ð1þ 1ÞD lattice shown in Fig. 1(b)
[13–15]. Even though this dynamics is intrinsically discrete
in both space and time, for spatiotemporally slow fields it
has an intriguing continuum limit of a Dirac model [29].
To explore nonlinear phenomena, dispersion compensat-

ing fiber (DCF) spools form part of the long and the short
loops. These DCFs have a narrow core size and thus a high
effective nonlinear coefficient [31] of approximately
7=km=W, leading to significant nonlinear effects in our
experiment [32]. We use DCF spools with a length of
approximately 4 km and employ peak powers on the order
of 100 mW. To sustain such high power, erbium-doped
fiber amplifiers are used to compensate for round-trip
losses. As reviewed in the Supplemental Material [29],

the significant Kerr nonlinearities lead to a power-depen-
dent phase-shift for the propagating light pulses, as
captured by [19,33,34]

umþ1
n ¼ 1ffiffiffi

2
p ðumnþ1e

iΓjumnþ1
j2 þ ivmnþ1e

iΓjvmnþ1
j2Þeiφm

n ;

vmþ1
n ¼ 1ffiffiffi

2
p ðvmn−1eiΓjv

m
v−1j2 þ iumn−1e

iΓjumn−1j2Þeiϕm
n ; ð1Þ

where Γ > 0 quantifies the effect of the nonlinear refractive
index per round-trip, corresponding to a negative inter-
action energy in the quantum fluids language. Here, umn and
vmn denote the amplitudes of the pulses incident on the beam
splitter from the short and long loops, respectively. The
time-dependent linear phase shifts φm

n and ϕm
n are externally

controlled through phase modulators inserted in each loop,
and can be used, for example, to imprint defects or trapping
potentials on the fluid of light.
As the equations are periodic in both position n and time

step m, they can be solved in the linear regime (Γ ¼ 0)
using a Floquet-Bloch ansatz [15,35]. This gives two
bands, which are 2π periodic in both the propagation
constant or “quasienergy” ϑ and the “Bloch momentum”
Q along the 1D lattice, with a dispersion relation cosϑ ¼
cosQ=

ffiffiffi
2

p
as shown in Fig. 1.

Sound excitations.—The linear dynamics of small exci-
tations, δumn and δvmn , on top of a strong field, umn and vmn ,
can be described within the Bogoliubov theory of dilute
Bose-Einstein condensates [36,37]. For simplicity, we
consider the case where the fluid of light is spatially
uniform with the same amplitude

ffiffiffiffi
I0

p
in both loops and

is initially at rest in the m, n coordinate system. This
corresponds to a condensate of density I0 in the lower band
eigenstate at Q ¼ 0 marked by a circle in Fig. 1(c).
Analytical manipulations lead to the Bogoliubov dispersion
relation [35,38]

cosθ¼1

2
ΓI0coskþ

1

2
cosk

�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ2I20þ2ΓI0þ1Þcos2kþ2sin2k−4ΓI0

q
; ð2Þ

where θ and k are, respectively, the quasienergy and the
Bloch momentum (both of period 2π) of the small
perturbation. This dispersion has two positive and two
negative branches as shown in Fig. 1(d) for the linear
(ΓI0 ¼ 0) and (e) a weakly nonlinear (ΓI0 ¼ 0.2) case.
At small momenta, this Bogoliubov dispersion can be

expandedasθðkÞ ¼ ṽSjkj þOðjkj3Þ, indicating that the long
wavelengthexcitationsarephononlike,withaspeedofsound

ṽS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓI0=ð1 − ΓI0Þ

p
ð3Þ

that grows for increasing nonlinearity faster than the usual
square-root dependence of a simple Gross-Pitaevskii

FIG. 1. (a) Optical pulses propagating in two nonlinear, coupled
fiber loops of slightly different lengths, are used to explore
nonlinear light evolution in the ð1þ 1ÞD lattice, shown sche-
matically in (b). In this mapping, the light intensity is a function
of the discrete position in the lattice, n, and evolves with respect
to the discrete time step, m. Completing a round-trip in the short
(long) loop in the real system in (a) corresponds to traveling from
northeast (northwest) to southwest (southeast) in the effective
lattice in (b). Acousto-optical modulators (AOM) and erbium
doped fiber amplifiers (EDFA) are used to compensate for losses.
A phase modulator (PM) in each loop allows us to induce
arbitrarily designed space- and time-dependent potentials. (c) The
corresponding photonic bands in the linear (Γ ¼ 0) regime. (d),(e)
The Bogoliubov dispersions (2) on top of a condensate located at
Q ¼ 0 in the lower band [circle in (c)] for (d) linear and
(e) nonlinear (ΓI0 ¼ 0.2) systems. The slope of the straight blue
dashed line indicates the speed of sound (3). The red (black) color
of each curve indicates the positive (negative) value of the band’s
Bogoliubov norm.
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superfluid [36]. Note that the positive sign of the nonlinear
refractive index in the considered DCFs forced us to work
with a negative-mass photonic band [i.e., the top of the lower
band in Fig. 1(c)] to avoid dynamical modulational insta-
bilities. An upper bound to the sound speed is imposed by
further dynamical instabilities of different nature that are
found for ΓI0 > 0.5 [35].
Probing the speed of sound.—As a first step, we

investigate the propagation of spatially narrow excitation
pulses on top of a wide field. We initially prepare the
optical field at rest with a wide Gaussian profile corre-
sponding to an equal amplitude in each loop at m ¼ 0:
u0n ¼ v0n ¼

ffiffiffiffi
I0

p
e−n

2=σ2g , where σg ≃ 8. Changing the input
pulse power between experimental runs allows us to study
the effect of nonlinearity in detail. Note that according to
the notation introduced in (1) only every second lattice site
is occupied as the effective lattice has diamondlike con-
nectivity [Fig. 1(b)].
To perturb this wide fluid of light, we rapidly turn on and

off a strong and spatially localized defect potential φd,
imprinted via the time-dependent phase shifts in (1) as

φm
n ¼ ϕm

n ¼ Φd ≡ φde−ðn−ndÞ
2=σ2ne−ðm−mdÞ2=σ2m; ð4Þ

where φd is the defect amplitude, σn (σm) is related to the
defect width with respect to position (time) and nd (md)
marks the position (time) of the defect. We choose φd ¼
π=10 to ensure a sufficient contrast between the perturbed
and unperturbed signal, and σn ¼ 1 and σm ¼ 2 so that the
defect is short enough to excite low-momentum perturba-
tions. The defect peak amplitude is atmd ¼ 20 and nd ¼ 0,
and the propagation is observed over a long time
until mmax ¼ 110.
The propagation dynamics of the emitted waves is

measured by the differential intensity ΔI ¼ Ipert − Iunpert,
where Ipert ¼ jumn j2 þ jvmn j2 in the perturbed experiment,
and similarly for Iunpert in the unperturbed case. This is
plotted in Fig. 2(a) for two different values of the effective
nonlinearity: Γeff ∝ ΓI0, where I0 is the initial light
intensity that we can control. As can be seen, the defect
emits a train of excitations which spread out over time [39].
We expect the slowest strong emission to be that associated
with sound waves, and so we fit ΔIðnÞ at each time step to
extract the position of the minima [29]. The corresponding
average speed, vM, of the minima at late times is plotted in
Fig. 2(b).
In order to extract the value of the speed of sound, we

need to take into account the fact that the underlying fluid
of light is also itself expanding during the experiment,
dragging all excitations along with it. Hence, we numeri-
cally estimate a local expansion speed by applying a
discretized continuity equation to the unperturbed evolu-
tion [29]. The corresponding average expansion speed, vE,
at the position of the minima at late times is plotted in
Fig. 2(b). By comparing these speeds, we finally obtain the

estimate for the speed of sound vS ¼ vM − vE plotted in
Fig. 2(b). Due to experimental uncertainties, we did not fit
our data to the analytical sound speed (3), but our results
clearly show the expected qualitative trend as we measure
vS as being close to zero at low power, and then rising with
increasing nonlinearity. One may argue that the local light
intensity and hence the local nonlinearity and speed of
sound can vary over time. However, as we show in the
Supplemental Material [29], the local light intensity
remains relatively stable because the amplifiers largely
compensate for any intensity drops. The alternative way of
plotting the data as a function of the averaged unperturbed
local intensity at the position of the minimum exhibits the
same qualitative features as Fig. 2(b) [29].
Friction on moving defect.—A key advantage of the

nonlinear optical mesh lattice is that we can probe in the
same setup the response to defects which are moving at
arbitrary speeds along arbitrary trajectories. One definition
of superfluidity [40] is the existence of a nonzero critical
velocity below which a weak, uniformly moving defect will
not excite permanent waves in the fluid. This critical
velocity can be predicted by means of the so-called
Landau criterion, and for a Gross-Pitaevskii superfluid
corresponds to the speed of sound [36].
The situation is slightly more subtle in a lattice geometry,

for which the Landau criterion predicts a vanishing critical
velocity, as the k periodicity of the Bogoliubov dispersion
allows any moving defect to emit excitations at larger mo-
mentum. In this sense, a lattice system can never truly be a
superfluid, but in practice the excitation efficiency for such
“Umklapp waves” is negligibly small [35]. On this basis,
we restrict our attention to low-transferred-momentum

(a) (b)

FIG. 2. (a) Experimentally observed propagation of perturba-
tions induced by imposing a short and localized phase defect onto
a Gaussian fluid of light for two different values of the effective
initial nonlinearity, Γeff ∝ ΓI0. The colorscale represents the
differential intensity, ΔI, between the perturbed and unperturbed
experiments. All parameters are stated in the main text. (b) The
estimated speed of sound vS ¼ vM − vE grows from around zero
with increasing nonlinearity. Also plotted are vM, the average
speed of the innermost minima at late times obtained by fitting the
results in (a), and vE, the average expansion speed of the
unperturbed fluid of light at the minima positions, from which
the sound speed was extracted. For clarity, error bars for vM and
vE are shown in the Supplemental Material [29]. Lines are
included as a guide to the eye.
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processes with −π ≤ Δk < π, for which the Landau cri-
terion predicts a minimum defect speed below which the
fluid of light should not be excited substantially; thiswe term
“superfluidlike” behavior. Note also that, within this
restricted range of excitation processes, there is often also
a maximum defect speed, above which the defect is moving
too fast to excite the sonic branch of Bogoliubov waves but
too slow to excite the other branches, again leading to
apparent low dissipation. At even higher speeds, dissipation
increases again as the defect moves fast enough to excite
other branches.
In analogy with previous experiments with polariton

fluids in semiconductor microcavities [8–10], a natural
strategy to experimentally address superfluidity in our
platform would then be to look at the perturbation that
is induced in the density profile by a uniformly moving
defect. We also performed experiments along these lines
but had to fight serious experimental obstacles resulting
from the finite size of our photon fluid. Its resulting rapid
expansion together with the corresponding drop of its
density made it difficult to extract conclusive information
from the observations (see the Supplemental Material [29]).
To overcome this difficulty, a conceptually different

scheme was adopted so as to exploit the peculiarities of
our platform. Instead of looking at the instantaneous
density perturbation, our observable is the total energy
that is deposited by the moving defect into the fluid during
the whole excitation sequence. Related calorimetric
schemes were used to detect superfluidity in atomic gases
[41–43] but were never implemented in fluids of light,
mostly because of the intrinsic dissipation of microcavity
systems.
More specifically, we adopted a configuration in which

the optical field is excited with a defect over many time

steps and the fluid is kept in place by a confining potential.
For technical reasons, the trap and defect are only applied
in the short loop, i.e., ϕm

n ¼ 0. The phase shift of the short
loop is the sum φm

n ¼ Φd þΦt of the defect contribution
Φd given in (4) and the trap one, Φt ¼ φtð1 − e−ðn−ntÞ2=σ2t Þ.
Values φt ¼ π=10, σt ¼ 8 and nt ¼ 14 of, respectively, the
height, offset, and half-width of the trap are chosen in order
to minimize residual motion of the trapped beam, which is
initialized with the Gaussian profile detailed above. The
defect is kept in the central trapped region and is moved
in space along the sinusoidal trajectory defined by
ndðmÞ ¼ 4 sinðsmÞ, and has σn ¼ 1 and φd ¼ −π=10.
Rather than slowly switching on and off, the defect is
applied with a constant amplitude from m ¼ 0 until
m ¼ 200 so as to excite the fluid of light in a more
significant way.
Excitation of the optical field by the defect is inves-

tigated looking at the spatiotemporal intensity distribution
shown in Fig. 3. For all velocities, light has to adapt to the
constantly changing defect potential and some light ejec-
tion can be clearly observed as light bursts propagating
away from the central trapped region. But, most impor-
tantly for our superfluidity purposes, for low values of the
peak defect velocity (s ¼ 0.01 and s ¼ 0.05) the field
quickly returns to an almost quiet state once the defect has
disappeared. Only a faster moving defect can efficiently
transfer energy to the fluid and thus permanently change
its state. This heating effect is visible for s ¼ 0.1 with
persistent oscillations and is a clear evidence that the defect
speed was large enough for superfluidity to break down.
To make this analysis more quantitative and highlight the

crucial role of superfluidity over other emission processes
due to the noninertial motion of the defect [44], we
estimated the deposited energy by measuring the average
potential energy at late times:

hEpoti ¼
1

jþ 1

Xmmax

m¼mmax−j

P
njumn j2ΦtP
njumn j2

; ð5Þ

where j corresponds to the number of time steps after the
defect is switched off; here j ¼ 100. This quantity is
plotted in Fig. 3(b) for experiments in the two cases of
the linear and the nonlinear regime. In the linear case, we
observe that the potential energy steadily increases with
the defect speed. In the nonlinear regime, we see that the
potential energy starts at a higher level, caused by the
repelling nonlinear interaction that pushes the field up
the walls of the trap and remains approximately constant for
low defect speeds. A sudden threshold is visible for speeds
around s ¼ 0.07, after which the potential energy begins to
significantly increase. This behavior can be reproduced
numerically [29] and confirms the presence of an effective
threshold speed, above which superfluidity breaks down
and friction becomes important.

(a) (b)

FIG. 3. (a) Spatiotemporal plot of the measured intensity in the
short loop for a trapped nonlinear fluid of light (ΓI ≈ 0.5 in the
center of the trap) excited by a sinusoidally moving defect at
various speeds s, applied to the optical field from m ¼ 0 to
m ¼ 200. Defect and trap parameters are as given in the main
text. (b) Late-time average of the potential energy (5) for
experiments in the linear and nonlinear regime [nonlinear regime:
power levels as in (a), linear regime: power levels 1=5 of (a)]. In
the linear regime, we observe that the potential energy increases
steadily with the defect speeds, while in the nonlinear regime, it
remains approximately constant for low s and shows a marked
upward kink at s ≈ 0.07.
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Conclusions.—In this Letter we have reported an exper-
imental study of superfluid light in a one-dimensional
optical mesh lattice where the arrival time of pulses plays
the role of a synthetic spatial dimension. The unique
spatiotemporal access to the field dynamics offered by
our experimental setup was instrumental to perform the first
direct measurement of the speed of sound in a fluid of light.
The conservative dynamics of our fluid of light then
allowed for a quantitative measurement of the friction
force felt by a moving defect and of the consequent heating
effect, providing unambiguous signature of superfluidity.
Taking advantage of the flexibility of the setup in designing
different geometries, ongoing work is extending the inves-
tigation to fluids of light in lattices with nontrivial geo-
metrical [45] and topological properties [24,25] in two [12]
or even higher d > 3 dimensions [26,46]. From a more
applicative perspective, the nonlinear optical mesh platform
opens exciting new avenues to exploit the interplay of
interference and nonlinear optical processes for manipu-
lations of the quantum states of optical pulses in fibers
[47–49].
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