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Real-world systems are characterized by complex interactions of their internal degrees of freedom, while
living in ever-changing environments whose net effect is to act as additional couplings. Here, we introduce
a paradigmatic interacting model in a switching, but unobserved, environment. We show that the limiting
properties of the mutual information of the system allow for a disentangling of these two sources of
couplings. Further, our approach might stand as a general method to discriminate complex internal
interactions from equally complex changing environments.
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Real-world systems exhibit interactions among their
internal degrees of freedom. Furthermore, they are usually
coupledwith a noisy, ever-changing environment.Modeling
together these two distinct contributions is often a problem
too hard to be tackled, and a common approach would
prescribe to simply ignore environmental effects altogether.
In the last twenty years, however, it was realized in many

different fields that the effects of a noisy environment are
often as fundamental as the internal interactions. Biological
systems [1,2], biochemical [3] and gene regulatory networks
[4–6], swarming, oscillatory, and ecological systems [7–9]
are only a few examples of noisy interacting systems living
in an equally noisy environment, and being consequently
affected by it. In the last years, it has been also shown that
many observed properties believed to be distinctive of neural
interactions can be solely explained by an environmental-
like dynamics that affects all neurons in the same way [10–
13]. Alternatively, some of these properties might be
stochastic by nature and not reflect any particular feature
of the underlying degrees of freedom [14].
From a different perspective, crucial non-equilibrium fea-

tures in chemical systems, such as thermophoresis [15,16],
and pattern formation [17], have been recently shown to be
sheer consequences of the interplay between environmental
and internal interactions acting on different timescales [18].
To make things more interesting, an ever-growing wealth

of data are populating the realm of biological, chemical,
and neural systems, thus fueling the possibility of a direct
extrapolation of some properties belonging to the under-
lying dynamics. In fact, when dealing with experimental
data, it is not unusual to solve a given inverse problem, for
example, using a maximum entropy principle [19–21], to
reconstruct the interactions between the internal degrees of
freedom that shape the observed behavior. However, one
might ask whether these reconstructed effective couplings
could possibly be a pure consequence of nothing but our

ignorance about the unobserved environment in which the
system lives. This question is often particularly hard to
assess, as effective interactions arise even in noninteracting
systems under the influence of a correlated noise [22].
In this work, we introduce a complete dynamical model,

which includes both the internal dynamics, i.e., the one
stemming from internal physical couplings, and stochastic
environmental changes. While the internal dynamics is
independent of the environment, and fully determined by
system features, the environmental changes affect model
parameters shared by all degrees of freedom. Recently, this
problem has gained momentum from a theoretical perspec-
tive in different contexts [23–26], but the general question
of how we can possibly disentangle the effects of internal
interactions from those of a stochastic environment is very
much open and elusive. Here, we consider the paradigmatic
case of an environment affecting only the diffusion coef-
ficient, hence changing the stochastic variability of the
dynamics. Nonetheless, our modeling approach can be
immediately generalized to diverse scenarios, from more
complicated environments to spatially inhomogeneous
media [27].
We will directly tackle the disentangling problem by

using the mutual information to quantify the similarity
between different interacting processes. In fact, the mutual
information captures all cross-dependencies between two
random variables [28]. We will show that in the presence of
linearized interactions the mutual information of the whole
system does encode both internal and environmental
couplings as distinct contributions, and that they can
always be fully disentangled in suitable limits. Although
characterizing the specific nature of internal interactions
through mutual information remains a challenge, our
results suggest that fast-varying environments might reveal
the presence of underlying real couplings in any general
system.
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The mutual information between two stationary proc-
esses x1ðtÞ and x2ðtÞ is the Kullback-Leibler divergence
between their joint stationary probability distribution
pðx1; x2Þ and the product of their marginalized stationary
distributions pðx1Þpðx2Þ,

I ¼
Z

dx1dx2pðx1; x2Þ log
pðx1; x2Þ
pðx1Þpðx2Þ

¼ H1 þH2 −H12; ð1Þ

where H12 is the differential entropy of the joint distribu-
tion, and, similarly, Hμ is the differential entropy of the
marginalized probability distributions for μ ¼ 1, 2.
In order to fix the ideas, let us consider the paradigmatic

example of two interacting Ornstein-Uhlenbeck processes
[29]. This particular choice is twofold. First, an Ornstein-
Uhlenbeck process is one of the simplest multidimensional
stochastic process with a non-trivial stationary distribution.
Second, Ornstein-Uhlenbeck processes can often be seen as
a linearization of more complex, nonlinear internal inter-
actions. Therefore, we introduce an internal dynamics by
means of an interaction matrix A between the internal
degrees of freedom x1ðtÞ and x2ðtÞ. Then, we consider an
archetypal description of the environmental changes, which
we will regard as unobserved degrees of freedom acting on
both x1 and x2 in the sameway. At all times, x1 and x2 share
the same diffusion coefficient, and the diffusion coefficient
itself is a stochastic variable. In particular, we take it to be a
dichotomous process DiðtÞ between the states i ∈ f−;þg,
so that the diffusion coefficient jumps between two states
D− and Dþ > D−, with transition rates Wð− → þÞ ¼ wþ
and Wðþ → −Þ ¼ w−. All in all, our model can be written
as the set of Langevin equations

∂xμ
∂t ¼ −

X
ν

Aμν
xν
τ
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2DiðtÞ

q
ξμðtÞ; ð2Þ

where iðtÞ is a realization of the jump process between
f−;þg and ξ1 and ξ2 are independent white noises with
zero mean. Here, the environment is encoded in the two
distinct diffusion coefficients Di, whereas the internal
couplings stem from the off-diagonal elements of A.
Our goal is to understand whether these two distinct
contributions to the dynamics can be disentangled, and,
if so, under which conditions.
With this aim in mind, let us begin with the simple case

A ¼ 1, i.e., x1 and x2 do not interact, so that the only
contribution to the mutual information has to come from
the environmental changes. The system is described by a
joint probability distribution function piðx; tÞ to have
values x ¼ ðx1; x2Þ at time t and to be in the environmental
state i ∈ f−;þg. This probability is governed by the
Fokker-Planck equation

∂tpiðx; tÞ ¼
X2
μ¼1

∂μ

�
xμ
τ
piðx; tÞ

�
þDi

X2
μ¼1

∂2
μpiðx; tÞ

þ
X
j≠i

½wipjðx; tÞ − wjpiðx; tÞ�: ð3Þ

This model corresponds, for instance, to a switching
environment in a chemical [3,16] or biological [2,6] system,
or to different regimes of neural activity [10,13].
Furthermore, being related to “diffusing diffusivity” proc-
esses, it can also describe spatially disordered or inhomo-
geneous environments [27,30]. An extension to N different
processes ðx1;…; xNÞ andM environmental states i1;…; iM
is possible once we choose a multivariate generalization of
the mutual information (see the Supplemental Material [31]
for details).
Let us note beforehand that the mutual information,

Eq. (1), can only depend on dimensionless quantities. The
relevant dimensionless parameters of this model are
(i) τwsum, where wsum ¼ wþ þ w−, which governs the
timescale separation between the internal degrees of free-
dom and the jump process of the environmental states;
(ii) w−=wþ, which determines the relative persistence of the
environmental states; (iii) D−=Dþ, which describes the
separation between the environmental states. Importantly,
the joint probability does not depend on these three
parameters’ combinations only. Hence, to find a general
solution to Eq. (3) proves to be a particularly challenging
task. Therefore, we resort to a timescale separation that
corresponds to the two limits in which the jumps are either
much faster or much slower than the relaxation time of x1
and x2 (see the Supplemental Material [31]).
In a fast environment, we have τwsum ≫ 1, and we find

the stationary probability distribution

pFðx1; x2Þ ¼
1

2πτhDiπ
exp

�
−
x21 þ x22
2τhDiπ

�
≡ pFðx1ÞpFðx2Þ;

ð4Þ

where hDiπ ¼ ðDþwþ þD−w−Þ=wsum plays the role of an
effective diffusion coefficient, and the superscript F refers
to the fast-jumps regime. Loosely speaking, this limit
describes environmental changes affecting the internal
degrees of freedom only on average, leaving the two
processes independent. Hence, the joint probability factor-
izes and no mutual information arises (Fig. 1).
The picture is markedly different in the slow-jumps limit,

when τwsum ≪ 1. The stationary probability distribution is
now given by the Gaussian mixture

pSðx1; x2Þ ¼
1

2πτ

X
i

�
πsi
Di

e−
1

2Diτ
ðx2

1
þx2

2
Þ
�

¼ π−pS
−ðx1; x2Þ þ πþpSþðx1; x2Þ; ð5Þ
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where πi ¼ wi=wsum are the stationary probabilities of the
jump process, and the superscript S denotes the slow-jumps
regime. It is clear that in this limit the two processes are
not always independent. An example of a realization and
its corresponding probability distribution is shown in
Figs. 1(b) and 1(d), respectively. In the intermediate regime
between the fast- and slow-jumps limits we cannot solve
the Fokker-Planck equation explicitly, but a direct simu-
lation of the Langevin equations [32], Eq. (2), shows that
the resulting probability interpolates between Eq. (5) and
Eq. (4) in a smooth fashion [Figs. 1(d)–1(f)]. Therefore, we
will now focus on the slow-jumps limit, where we can
tackle the problem analytically, and the mutual information
takes nonzero values.
Even though no closed form exists for the entropy of a

Gaussianmixture, from the bounds proposed in Ref. [33] we
can build the corresponding bounds on the mutual infor-
mation starting from the Chernoff-α divergence and on the
Kullback-Leibler divergence between the mixture comp-
onents, as reported in the Supplemental Material [31].
Notably, both the upper bound IS;upenv ðD−=Dþ; w−=wþÞ
and the lower bound IS;lowenv ðD−=Dþ; w−=wþÞ on the mixture
distribution pSðx1; x2Þ only depend on the dimensionless
parameters D−=Dþ and w−=wþ. Moreover, although in
general these bounds are not tight, they do saturate in the

limits D−=Dþ → 0 or D−=Dþ → 1—and these limits are
particularly significant. The former corresponds to drastic
environmental changes, which lead to markedly different
dynamics and give rise to a bursty, seemingly coordinated
behavior of the internal degrees of freedom.The latter, on the
other hand, describes the trivial case inwhichD− andDþ are
very similar and thus environmental changes are effectively
negligible.We end upwith (see SupplementalMaterial [31])

ISenv

�
w−

wþ

�
¼

�−πþ log πþ − π− log π− if Dþ ≫ D−

0 if Dþ ≈D−;

ð6Þ

which, since the bounds saturate, are the exact limits of the
mutual information in the slow-jumps regime. Clearly, when
D−=Dþ → 1, the dynamics is insensitive to the environ-
ment, thus x1ðtÞ and x2ðtÞ are independent processes.
Instead, and interestingly, the first line is nothing
but the Shannon entropy of the jump distribution,
Hjumpsðw−=wþÞ. AMonteCarlo integration of Eq. (1) shows
that Hjumps is also the maximum value of the mutual
information that emerges due to the environment, see
Fig. 1(a). This result has a quite clear intuitive interpretation.
In fact, from an information-theoretic point of view, Hjumps

FIG. 1. The environmental contribution to the mutual information as a function of D−=Dþ and w−=wþ. (a) The colored surface is the
result of a Monte Carlo integration with importance sampling of the mutual information in the slow-jumps limit with τwsum ¼ 10−3 [see
Eq. (1) and Eq. (4)]. In the D−=Dþ → 0 limit, Ienv becomes exactlyHjumps, the black dashed line, which is also its maximum value. The
gray plane is instead the mutual information in the fast-jumps limit, which always vanishes. (b) A realization of x1ðtÞ and x2ðtÞ (red and
yellow curves) in the slow-jumps limit, at w−=wþ ¼ 1 and D−=Dþ ¼ 10−10. A bursty, coordinated behavior emerges due to the
environmental changes. (c) Same, but in the fast-jumps limit, where both variables show a Brownian-like behavior. (d)–(f) Comparison
between the marginalized probability distribution pðxμÞ from the simulated Langevin dynamics and the analytical distribution [(d) and
(f) cases] for D− ¼ 10−5, Dþ ¼ 1, τ ¼ 1 in (d) the slow-jumps limit at w− ¼ wþ ¼ 5 × 10−4, (f) the fast-jumps limit at w− ¼ wþ ¼ 50
and (e) in between at w− ¼ wþ ¼ 0.5.
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quantifies precisely the information lost once we integrate
out the stochastic environment, i.e., our ignorance about the
system as a whole.
So far, we have only considered the presence of

an effective coupling emerging from environmental
changes. Although our results have been derived for
Ornstein-Uhlenbeck processes, they equivalently hold for
the more general stochastic dynamics _xμðtÞ ¼ fμðxμÞþffiffiffiffiffiffiffiffiffiffiffiffi
2DiðtÞ

p
ξμðtÞ, even when fν ≠ fμ, as we show in the

Supplemental Material [31]. Now, it is time to introduce
back interactions between x1ðtÞ and x2ðtÞ by considering
the case in which the matrix A in Eq. (2) has nonzero off-
diagonal entries. We will show that their contribution to the
total mutual information, Itot, can be effectively disen-
tangled from Ienv under suitable limits.
Let us consider the matrix

A ¼
�

1 −g1
−g2 1

�

and assume that its eigenvalues have positive real parts, so
that a stationary state exists [34]. Let us also assume, for the
time being, that we are in the slow-jumps limit, so that we
can solve the Langevin equations separately forDþ andD−
and then average them over π� as in Eq. (5). The two
solutions are multivariate Gaussian distributions, each one
with a given covariance matrix Σ�.
In order to try and disentangle the environmental

contribution, which is due to Di, and the one stemming
from internal interactions, due to the off-diagonal elements
of A, we write the covariance matrices as Σi ¼ DiΣ̃. The
matrix Σ̃ then solves the Lyapunov equation (see the
Supplemental Material [31])

1

2
½AΣ̃þ Σ̃AT � ¼ 1; ð7Þ

which only depends on interactions and not on the jump
dynamics, nor on Di. We are now able to bound the mutual
information as

IS;up=lowtot ¼ IintðfgμgÞ þ IS;up=lowenv

�
D−

Dþ
;
w−

wþ

�
; ð8Þ

where

IintðfgμgÞ ¼
1

2
log

�
1 −

4

4þ ðg1 − g2Þ2
þ 1

1 − g1g2

�
ð9Þ

is the contribution to the mutual information due to the
internal interactions only, as we show in the Supplemental
Material [31]. Notably, Iint is also the sole contribution in
the fast-jumps limit, since no environmental contribution is
present to begin with. On the other hand, in the slow-jumps
limit we can write the two limits, as in Eq. (6),

IStot

�
fgμg;

w−

wþ

�
¼

�
Hjumps þ IintðfgμgÞ if Dþ ≫ D−

IintðfgμgÞ if Dþ ≈D−;

ð10Þ

where the environmental bounds saturate. Finally, in the
intermediate regime between the fast- and the slow-jumps
limits, a Monte Carlo integration of Eq. (1) shows that the
presence of linear internal interactions does simply shift the
mutual information with respect to the noninteracting
case (Fig. 2).
Therefore, our results suggest that Itot receives two

distinct contributions—one from the environment, Ienv,
and one from the internal linearized interactions, Iint—
disentangled in form:

Itot

�
fgμg;

D−

Dþ
;
w−

wþ

�
¼ IintðfgμgÞþ Ienv

�
D−

Dþ
;
w−

wþ

�
: ð11Þ

Although the equation above holds analytically in the fast-
jumps regime, and where the slow-jumps bounds Eqs. (8)–
(10) saturate, its validity has been numerically shown in the
entire range of parameters. Furthermore, even if the inter-
actions are nonlinear, we show in the SupplementalMaterial
[31] that in the fast-jumps limit the environmental contri-
bution vanishes exactly. Hence, and independently of the
underlying interactions, any nonzero mutual information in

FIG. 2. The total mutual information as a function of D−=Dþ
and w−=wþ at fixed τwsum ¼ 10−3, i.e., in the slow-jumps limit.
(a) The colored surface is the result of a Monte Carlo integration
with importance sampling of Itot, in the slow-jumps limit, for the
interacting model with g1 ¼ 5τ and g2 ¼ −0.1τ. The gray surface
is instead the non-interacting case, Ienv. The two contributions to
the mutual information disentangle and the interactions simply
result in a constant shift. (b) A comparison between the predicted
shift Iintðg1; g2Þ, Eq. (9), and the difference of the Monte Carlo
estimates of the two surfaces for every sampling point
ðw−=wþ; D−=DþÞ, namely, IMC

int ðw−=wþ; D−=DþÞ.

PHYSICAL REVIEW LETTERS 127, 228301 (2021)

228301-4



the fast-jumps limit acts as a fingerprint of the presence of
internal couplings.
This result is extremely interesting. In fact, although the

environmental states, identified by D− and Dþ in our
model, are usually not experimentally accessible, it
might be possible to characterize the frequency of the
environmental changes. Neural activity originated by
external stimuli [35–37], stirring in chemical conglomer-
ates [38], temperature-activated chemical reactions in
solutions [3,39], and population growth [40–42], are only
a few examples in which our framework might apply. Even
if fast-varying environments have been shown to be
informative, our approach might provide hints about the
presence of interactions even away from the fast-jumps
limit, by bounding the environmental contribution to the
mutual information. This intriguing perspective will be
investigated in future works.
Although we focused on a paradigmatic, but rather

comprehensive, physical model, let us note that these ideas
have a much larger scope, and that disentangling the
different dependencies of a system is a far-reaching ques-
tion. Techniques such as Bayesian networks and other
probabilistic graphical models have been successfully used
in biological data, for instance to disentangle different
sources of interactions and dependencies in general [43–
45]. Connections may be also drawn to machine learning
and artificial neural networks, particularly in the context of
learning disentangled representation of the data, i.e.,
representations in which the informative latent factors
are described by a factorized distribution [46–49], or in
generative models with latent variables, such as switching
state space models [50,51]. The environment in our model,
in fact, can be seen as a latent variable, i.e., unobserved and
independent on the observed degrees of freedom, while
affecting the observed dynamics. Unlike the one presented
here, these approaches are often harder to interpret and are
less prone to the derivation of exact results, even though
they remain extremely powerful in dealing with experi-
mental data. Hence, a possible future perspective is to
combine the physical interpretability and the analytical
procedures behind our work together with tools from
machine learning and data-driven approaches. This could
lead to promising results in the quest of meaningfully
disentangle the different sources of dependencies that
emerge in complex systems.
Furthermore, there are several more possible extensions

to this study. One might ask whether a stochastic environ-
ment can be mapped into a set of effective couplings with
defined properties, and if such couplings can be distin-
guished from the internal ones. Additionally, an important
and immediate generalization of our framework is to allow
the environment to be a continuous variable. These prob-
lems, in principle, can be treated from a field-theoretical
perspective, where the marginalization over the environ-
ment gives rise to new interaction vertexes that are not

present in the original theory, i.e., before the marginaliza-
tion. Ideally, this could allow for a much more general
framework amenable to analytical treatments.
On the other side, the ability to analytically deal with a

class of stochastic processes with tools of information
theory, as shown here, opens up many fascinating pos-
sibilities. A particularly appealing question is what happens
when, instead of considering a stochastic environment, the
system undergoes an external perturbation—notably, how
the latter changes the information content and how such
information evolves over time. A first step towards this
direction might be to consider two diffusion processes in a
finite domain that undergo a single stochastic jump, and to
study the persistence of the mutual information as a
function of time, domain size, and boundary conditions
of the system.
Ultimately, we believe that this work draws a path

towards a deeper understanding of the different sources
of couplings in real-world systems. Indeed, it is a starting
point to elucidate the relations between their internal
complexity and possibly equally complex, but unobserved,
ever-changing environments.
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