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We consider quantum many-body dynamics under quantum measurements, where the measurement-
induced phase transitions (MIPs) occur when changing the frequency of the measurement. In this work, we
consider the robustness of the MIP for long-range interaction that decays as r−α with distance r. The effects
of long-range interactions are classified into two regimes: (i) the MIP is observed ðα > αcÞ, and (ii) the MIP
is absent even for arbitrarily strong measurements ðα < αcÞ. Using fermion models, we demonstrate both
regimes in integrable and nonintegrable cases. We identify the underlying mechanism and propose
sufficient conditions to observe the MIP, that is, α > d=2þ 1 for general bilinear systems and α > dþ 1

for general nonintegrable systems (d: spatial dimension). Numerical calculation indicates that these
conditions are optimal.
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Introduction.—Understanding the general properties and
finding new phenomena regarding the time evolution of
quantum entanglement in quantum many-body systems is a
critical subject in physics. Recently, novel dynamic phase
transitions in quantum entanglement have been discovered
in the presence of quantum measurements [1–22]. In
general, the bipartite entanglement entropy of isolated
systems grows over time and eventually reaches the order
of the system size. Conversely, projective quantum mea-
surements suppress entanglement growth, such as in the
quantum Zeno effect under continuous measurement [23].
As a result of this competition, with increasing measure-
ment amplitude (frequency) in nonintegrable systems, the
bipartite entanglement entropy in the long-time limit shows
a transition from the order of the system size (the volume
law phase) to the order of the boundary area (the area law
phase). This phenomenon is now referred to as measure-
ment-induced phase transition (MIP).
MIPs have been intensively studied in various systems,

such as quantum circuit models [1–15], cold atomic
systems [16–19], and quantum spin systems [21,22]. We
emphasize that the MIP generally occurs irrespective of
integrability or nonintegrability. It has been recently found
that free-fermion systems also show the MIP, i.e., a
transition between the phase of the entanglement entropy
with the order of the logarithmic system size (the sub-
volume law phase) and the area law phase [19]. The MIP is
believed to be a ubiquitous phenomenon in isolated many-
body quantum systems.
In this Letter, we consider the MIP in long-range

interacting systems to understand the mechanism more
deeply. Here, long-range interaction means that the ampli-
tude of interaction decays as r−α, where r is the distance

between particles (see also Ref. [24]). As conceptually
established in statistical mechanics [26], phase transitions
generally depend on the interaction range, dimensionality,
and types of interactions. Various studies have shown that
physical properties change qualitatively under long-range
interactions. Examples include the static properties of the
equilibrium phase [27–29], ground state [30–33], and
dynamic properties [34–40]. Thus, it is natural to ask
whether long-range interactions influence the physics
of MIP.

FIG. 1. Schematic of findings. We consider fermion systems
with long-range interactions, where each site is constantly mea-
sured by the amplitude (frequency) γ. The function γcðαÞ is the
critical measurement amplitude [see Fig. 3(b) for the free fermion
case]. In the regime α < αc, the MIP does not exist. See Statement
1 for sufficient conditions of α for the existence of the MIP.
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The long-range interaction immediately propagates the
quantum information to particles with arbitrary distances,
and hence, the entanglement growth should be enhanced.
From this viewpoint, one anticipates nontrivial competition
between quantum measurement and long-range interaction
strength. We here address the following questions: (i) is
there a possibility for the absence of the MIP?; and (ii) what
are the conditions for the existence of the MIP?
The primary obstacle to addressing these questions lies

in the fact that the dynamics under quantum measurements
are highly nonlinear [23], which makes the analyses
difficult even numerically. We note that simple Clifford
circuit models have been employed in many studies so far
to overcome this difficulty [1,2,4–6,12–15]. Following this
spirit, we use a simple toy model to grasp the essence. We
start with a simple fermion model to address question (i).
We then identify the physical mechanism to make a
statement applicable to generic systems addressing ques-
tion (ii), where sufficient conditions to observe the MIP in
generic systems are proposed. Then, we obtain several
physical pictures, as summarized schematically in Fig. 1.
Model.—To obtain the essential physics of the effect of

long-range interaction in the MIP, we consider the follow-
ing simple long-range Hamiltonian:

H ¼
XL
j¼1

XL=2
r¼1

1

rα
½−c†jþrcj − c†jcjþr þ Vnjþrnj�; ð1Þ

where cj and c†j are the annihilation and creation operators

of the spinless fermion at site j, and nj ¼ c†jcj, respectively.
The parameter α is the degree of long-range interaction. We
impose the periodic boundary condition for the total system
size L, that is, cjþL ¼ cj. We set the Néel state to the initial

state, that is, ψðt ¼ 0Þ ¼ QL=2
i¼1 c

†
2i−1jvaci, where jvaci is

the vacuum state. Note that the total number of fermions is
fixed at L=2 at all times. We perform a quantum meas-
urement uniformly for all sites with a finite measurement
amplitude (frequency) γ. Then, the time evolution of the
wave function is described by the standard quantum jump
process [18,23], that is,

djψðtÞi ¼ −iHjψðtÞidt

þ
XL
j¼1

�
c†jcjjψðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψðtÞjnjjψðtÞ

p − jψðtÞi
�
dwjðtÞ; ð2Þ

where dwjðtÞ takes 0 or 1 obeying the site-independent
Poisson process, that is, hhdwjðtÞii ¼ γdt. Here, hh…ii is
the noise average. As a result of the measurement process,
there are many trajectories of the wave functions starting
from the fixed initial state. Hence, we need to take an
average over many trajectories to examine the statistical
properties of any observables. The main physical quantity

we address is entanglement entropy. Let us divide the
system into two subsystems A and B, which have sizes l
and L − lðl ≤ L=2Þ, respectively. Then, the entanglement
entropy is defined as

Sl ≔ −TrðρA log ρAÞ; ð3Þ

where ρA is the reduced density matrix of subsystem A for a
given wave function jψi, that is, ρA ¼ TrBðjψihψ jÞ, where
TrB is the partial trace with respect to part B. We discuss the
trajectory average S̄l, employing a sufficient number of
trajectories. We also compute the mutual information as
another indicator to detect the MIP. To this end, we divide
the total system into four subsystems in the order of a, b, c,
and d along the system [hence, the regions a and d contact
with each other on the ring geometry, see also Fig. 2(c)].
We then consider the mutual information between the
region a and c, Iðγ; αÞ ¼ Sa þ Sc − Sac, where Sa, Sc,
and Sac are the entanglement entropy for the regions a, c,
and aþ c, respectively. We denote the average values of
mutual information by Īðγ; αÞ.
Free fermion case.—We first consider the free fermion

case, that is, V ¼ 0. The wave function can be expressed
in the form of jψðtÞi ¼ QL=2

m¼1

P
L
j¼1 uj;mðtÞc†j jvaci. The

many-body wave function is expressed through the func-
tion uj;mðtÞ, where the relation

P
L
j¼1 u

�
j;muj;m0 ¼ δm;m0 is

imposed to guarantee normalization. The correlation

FIG. 2. (a) and (b) S̄l as a function of sinðπl=LÞ (L ¼ 200) for
α ¼ 1.8 in (a) and for α ¼ 0.8 in (b), where the x axis is log scale.
The CFT behavior can be observed around l ∼ L=2 as indicated
in (a), where the solid lines are guides for the eyes. (c) and (d) The
mutual information as a function of γ.
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function is calculated using the relation hψðtÞjc†i cjjψðtÞi ¼PL=2
m¼1 uj;mðtÞu�i;mðtÞ. In addition, the entanglement entropy

can be computed once the correlation functions are
obtained [41]. See the Supplemental Material for these
established methods [42].
In Figs. 2(a) and 2(b), we show the numerical data for the

entanglement entropy, which is a long-time average starting
from the Néel state. See endnote [43] for the numerical
details used to obtain the data. These figures show the l
dependence of the entanglement entropy for α ¼ 1.8 and
α ¼ 0.8, respectively, for a fixed length L ¼ 200. As
indicated in Fig. 2(a) with solid lines, the entanglement
entropy around l ∼ L=2 is well fitted by the functional form
of the conformal field theory (CFT) with the effective central
charge cðγ; αÞ: S̄l ¼ ½cðγ;αÞ=3� log2½ðL=πÞ sinðπl=LÞ� þ
const.. For the short-range interaction limit α → ∞, this
behavior was reported in Ref. [19]. In Fig. 2(a), the
entanglement entropies becomes constants for large γ,
implying the area law, while Fig. 2(b) has no indication
of the area law. Figures 2(c) and 2(d) show the mutual
information Īðγ; αÞ between the regime a and c depicted
schematically in Fig. 2(c), where the regions a and c with
the length L=8 are separated by the regime b and d with the
length 3L=8. Figure 2(c) is the result for α ¼ 1.8, where
there is a crossing point γc, while Fig. 2(d) for α ¼ 0.8 does
not exhibit such a crossing phenomenon.
For the free fermion model, the finite-size effect is

significant [19], and hence it is not trivial to obtain critical
points which separate the subvolume law phase (nonzero
central charge in S̄l) and the area law phase (constants in
S̄L=2). To suppress the size effects, we use crossing points
as illustrated in Fig. 2(c) to detect the critical points. In
addition, we consider the Berezinskii-Kosterlitz-Thouless
(BKT) scenario that was valid for the short-range limit [19].
We remark that a similar technique using crossing points
has been employed for several equilibrium systems [44,45].
Note also that the mutual information has been employed
as a good indicator to detect the MIP in many systems
[4,10,18]. We use an ansatz of the finite-size scaling
for the BKT scenario [19,46,47]: gðLÞγĪðγ; αÞ ¼
FðlogfLξ½γ; γcðαÞ�gÞ, where ξ is the BKT-type correlation
length ξ½γ; γcðαÞ� ∼ exp½−ν= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ − γcðαÞ
p �. Here, γcðαÞ is

the crossing point, which depends on α. In Fig. 3(a), we
verified that the scaling ansatz. These scaling data strongly
suggest that γc can be regarded as critical points. In
Fig. 3(b), we show the behavior of γcðαÞ as a function
of α. In the gray shaded area (α < 1.5), we can find no
critical points [that is, no crossing point, as shown in
Fig. 2(d) [42]]. Thus, we find that the critical value αc ≃ 1.5
separates the absence and existence of the MIP (see Fig. 1).
Analysis based on the entanglement growth rate.—Next,

we discuss the underlying physical mechanism for the
numerical findings in Fig. 3(b). We argue that the key
component is the growth rate of the entanglement entropy

in pure quantum dynamics without measurement. Note the
following expression for the entropy growth rate under pure
quantum dynamics:

_Sl ¼ −ikHABkλðρÞ;
λðρÞ ≔ TrðhAB½ρ; log ρA ⊗ 1B�Þ; ð4Þ

where ρ ¼ jψðtÞihψðtÞj, hAB ≔ HAB=kHABk (k…k is the
operator norm), and 1B is the identity operator for sub-
system B. The Hamiltonian HAB denotes the boundary
interaction between subsystems A and B:

HAB ¼
X
i∈A

X
j∈B

hi;j; ð5Þ

where hi;j is an interaction operator acting on sites i and j.
Of interest is the case where l ¼ L=2. While the function
λðρÞ highly depends on the states [48–50], the value is finite
for less entangled states (it is zero, especially for a
decoupled state such as the Néel state). Suppose that
kHABk is finite. Then, a sufficiently large measurement
amplitude can suppress the entanglement growth, and
hence the MIP should occur. Conversely, when kHABk
diverges in the thermodynamic limit, the finite measure-
ment amplitude can no longer suppress entanglement
growth, leading to the absence of the MIP. Therefore,
the operator norm kHABk should play a central role
in determining the presence or absence of MIPs. We

FIG. 3. (a) Finite-size scaling for the mutual information with
the BKT scenario gðLÞγĪðγ; αÞ versus logfLξ½γ;γcðαÞ�g¼
logL−ν=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ−γcðαÞ

p
, where ν¼6.0, 5.5, 4.5, and 3.0 for

α ¼ 1.6, 1.8, 2.3, and α ¼ ∞, respectively and gðLÞ ¼
½1þ 1=ð2 log L − 4Þ�−1. (b) Critical amplitude γcðαÞ as a func-
tion of α. No critical amplitude exists for α < 1.5.

PHYSICAL REVIEW LETTERS 128, 010603 (2022)

010603-3



consider the size dependence of the operator norm kHABk
for l ¼ L=2 in the free fermion case. We numerically
find that kHABk ∝ L1−αðα < 1Þ, ∝ logLð1 < α < 1.5Þ and
constants (α > 1.5) (see also Fig. S3 in the Supplemental
Material [42]). This explains the absence of MIP for
α < 1.5 in Fig. 3(b).
Sufficient condition for the MIP in generic systems.—

The free fermion model indicates that the behavior of the
boundary interaction Hamiltonian is a key component for
observing the MIP, as it governs the entanglement growth
rate under pure quantum dynamics, and we now use this
key component to make a statement applicable to generic
systems. We discuss the sufficient conditions to observe the
MIP for generic fermion systems. That is, we seek the value
αsc (≥ αc), where for α > αsc, the MIP exists for generic
many-body quantum systems. To this end, we rigorously
derive the following lemma:
Lemma 1.—Let us consider a Hamiltonian on the

d-dimensional hypercubic lattice as H ¼ P
i<j hi;j such

that khi;jk ≤ g=rαi;j, where g is a constant. Then, under the
condition of α > αsc with

αsc ¼
�
d=2þ 1 Bilinear systems;

dþ 1 Interacting systems;
ð6Þ

the operator norm kHABk is upper bounded by the
boundary area between A and B.
See the Supplemental Material for rigorous proof [42].

Using this lemma and the underlying physics, we can make
a physical statement regarding the existence of the MIP:
Statement 1.—α > αsc is a sufficient condition for the

existence of the MIP for generic uniform and noncommut-
ing systems.
Note that the statement is the sufficient condition for any

system to have the MIP, and hence, this does not exclude
that specific models can show the MIP for α < αsc.

True critical value for a specific model, αc, is equal to
or smaller than the value αsc. Intriguingly, in the bilinear
fermion system that we have discussed, the above statement
is optimal, since αc ¼ αsc ¼ 3=2.
Interacting fermion systems.—In the remainder of this

Letter, we demonstrate that the above statement is
satisfied in nonintegrable models. We consider the inter-
acting fermion system with V ¼ 1 in Eq. (1). We first
calculate the operator norm kHABk up to the size L ¼ 256
using the density-matrix renormalization group technique
[51–53]. We find clear evidence that kHABk ∝ L2−α for
α < 2, while they are constants for α > 2 (see Fig. S4 in
the Supplemental Material [42]), from which we anticipate
that the MIP appears for α > 2, which is consistent with
Statement 1.
To assess this statement in greater detail, we perform the

time-evolution calculation up to the system size L ¼ 22
using the time-dependent variational principle method
[54–56]. See the footnote for the numerical details [57].
We focus on the mutual information Īðγ; αÞ between the
farthest two sites a and c that is depicted in Fig. 4(a), where
the regimes b and d have L=2 − 1 sites.
We show the results for α ¼ 3.0 and α ¼ 0.5 in Figs. 4(a)

and 4(b), respectively, as functions of γ for different system
sizes. To discuss the figures, we recall that many studies so
far [4,10,18] have established that in nonintegrable sys-
tems, the mutual information shows a peak as a function of
γ, where the amplitude giving a peak denoted by γp is
identified as a critical value of the measurement amplitude
separating the volume law phase for γ < γp, and the
area law phase for γ > γp in the thermodynamic limit.
Figures 4(a) and 4(b) also show the peak structure as a
function of γ. However, a crucial observation here is that
the values of γp (indicated by arrows) generally depend on
the system size. In the case of α ¼ 3.0, the values of γp are
not affected by the system size, especially for large L.

FIG. 4. (a) and (b) The mutual information Īðγ; αÞ between the farthest two sites for α ¼ 3.0 in (a) and for α ¼ 0.5 in (b). The values γp
indicated by arrows are amplitudes that give the peaks. (c) The system-size dependence of γp. This indicates that γp robustly remains
finite for α > 2 in the thermodynamic limit. (d) The finite-size scaling for α ¼ 3.0 with the ansatz Īðγ; αÞ ¼ L−βf½ðγ − γpÞL1=ν� with the
exponents β ¼ 2.59� 0.02 and ν ¼ 1.4� 0.1.

PHYSICAL REVIEW LETTERS 128, 010603 (2022)

010603-4



For α ¼ 0.5, the values of γp are strongly affected by the
system size, that is, γp systematically increases with
increasing system size.
This systematic change for α ¼ 0.5 indicates that γp

eventually diverges in the thermodynamic limit, leading to
the absence of the MIP. From this observation, the system-
size dependence of γp should be an indicator of the
existence of the MIP. In Fig. 4(c), we plot the values of
γp as a function of the system size L for various α values.
This figure shows that for α > 2, γp is robustly finite for
sufficiently large system sizes, which means that the critical
measurement amplitude exists even in the thermodynamic
limit; hence, the MIP shows up for (at least) α > 2. This
observation is consistent with Statement 1, which states that
α > 2 is sufficient to observe the MIP in one-dimensional
generic interacting systems. As an additional check on the
existence of the MIP for α > 2, we consider the finite-size
scaling with the ansatz Īðγ; αÞ ¼ L−βf½ðγ − γpÞL1=ν�. In
Fig. 4(d), we show that the finite-size scaling works well
with the exponents β ¼ 2.59� 0.02 and ν ¼ 1.4� 0.1.
Note that for α < 2, this scaling is not available since γp
varies as increasing the size. Available analysis for given
data are consistent with Statement 1. In the present
interacting system, the sufficient condition is optimal, since
αsc ¼ αc ¼ 2.
Summary.—We have revealed the effects of long-range

interactions on the measurement-induced phase transition
(MIP), which is summarized in Fig. 1. The key component
for the existence of the MIP is the boundary interaction
Hamiltonian under pure quantum dynamics in the thermo-
dynamic limit. Based on this, we have arrived at sufficient
conditions to observe the MIP, as described in Statement 1.
The numerical results for the specific models indicate
that this condition is optimal. We hope that this criterion
is useful in real experimental setup with long-range
interaction [58–70].
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Note added.—Recently, we became aware of complemen-
tary works on the measurement-induced phase transition
using long-range quantum circuits [71] and on the field
theoretical argument for the free fermion systems [72]. The
latter work [72] is related to our sufficient condition in
Statement 1 and some classification of phase transitions
is shown.
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