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We identify an unconventional algebraic scaling phase in the quantum dynamics of long-range hopping,
free fermions, which are exposed to continuous local measurements. The algebraic phase occurs for
hopping decay exponents 1 < p≲ 3=2, and features an algebraic entanglement entropy growth, and a slow
algebraic decay of the density-density correlation function, both with a fractional exponent. It is separated
from a critical phase with logarithmic entanglement growth at small, and an area law phase with constant
entanglement entropy at large monitoring rates. A perturbative renormalization group analysis predicts that
the transitions to the long-range phase correspond to an unconventional, modified sine-Gordon theory.
Exact numerical simulations of the monitored wave functions are in excellent agreement with an analytical
replica field theory approach, which confirms the view of the measurement-induced phase transition as a
quantum phase transition in the dark state of an effective, non-Hermitian Hamiltonian.

DOI: 10.1103/PhysRevLett.128.010605

Augmenting the unitary quantum evolution with pro-
jective or continuous measurements advances the phenom-
enology of nonequilibrium quantum systems and provides
a new angle for understanding quantum dynamics [1–25].
One particular scenario are measurement-induced phase
transitions (MIPT), which arise in wave functions that
evolve under the interplay of unitary time evolution and
frequent local measurements, and where the measurement
outcomes are tracked along each trajectory [1–17]. Because
of the Hermiticity of measurement operators, the averaged
quantum dynamics, corresponding to unread measure-
ments, follows a Lindblad master equation with
Hermitian jump operators, which converges towards a
featureless infinite temperature state [26–29]. The exten-
sive configurational entropy generated by all possible
measurement outcomes erases all the information on
individual trajectory wave functions. However, individual
wave functions preserve nontrivial quantum features, and
can undergo a MIPT, which is witnessed by state depen-
dent, nonlinear observables, e.g., the entanglement entropy
or connected correlation functions.
So far, two major types of MIPTs have been identified by

their entanglement growth with system size L. One is
represented by transitions from a volume (S ∼ L) to an area
law (S ∼ L0) [1–9], and observed for random circuits and
certain interacting Hamiltonians [10–12]. A second type
are transitions from a critical phase with a logarithmic
growth of entanglement entropy (S ∼ log L), again to an
area law [13–17].
This calls for the question, whether this is the exhaustive

set of phases and phase transitions that can exist in
monitored quantum dynamics. Promising candidates for
exploring it are systems with long-ranged generators of
dynamics: Long-ranged Hamiltonians are known to induce

new phases in ground states, and to qualitatively modify
the critical behavior at phase transitions [30–32]. The thus
achieved redistribution of particles over large distances
strongly modifies the entanglement dynamics and the
spreading of correlations [33–35]. Experimental platforms
for engineering such Hamiltonians range from trapped ions
[35–38], cold atoms in cavities [39,40], Rydberg atoms
[41], and polar molecules [42].
In this work, we explore an elementary model of

monitored, long-ranged dynamics: Free fermions with
variably ranged hopping, characterized by an algebraic
range exponent p [see Fig. 1(a)], competing with disen-
tangling, local particle number measurements. As a main
result, we demonstrate that the long-range entangling
evolution leads to the emergence of an unconventional
dynamical phase, in which the entanglement entropy grows
with the system size S ∼ Lb with b ¼ 3=2 − p [43], faster
than logarithmically but slower than the volume law of fully
ergodic dynamics [44]. Furthermore, the phase features
nonlinear density-density correlation functions, which fol-
low an algebraic decay ∼L−a with a ¼ pþ 1=2. This
phase is realized for exponents 1 < p < pc ¼ 3=2, irre-
spective of the strength of measurement γ > 0: Local
measurements cannot supersede the entanglement gener-
ated by long-range coherent hopping. This implies the
existence of a tricritical point, where a conformally
invariant phase with logarithmic entanglement growth,
an area law phase, and the long-range phase meet [see
Figs. 1(b), 1(c)].
To establish these results, we employ a combination of

numerical simulations [13,16,45] and an analytical replica
field theory [14], in which the steady state under monitor-
ing emerges as the dark state of an effective, non-Hermitian
sine-Gordon Hamiltonian. The measurements then favor

PHYSICAL REVIEW LETTERS 128, 010605 (2022)
Editors' Suggestion Featured in Physics

0031-9007=22=128(1)=010605(6) 010605-1 © 2022 American Physical Society

https://orcid.org/0000-0002-6924-6741
https://orcid.org/0000-0001-5194-9388
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.010605&domain=pdf&date_stamp=2022-01-05
https://doi.org/10.1103/PhysRevLett.128.010605
https://doi.org/10.1103/PhysRevLett.128.010605
https://doi.org/10.1103/PhysRevLett.128.010605
https://doi.org/10.1103/PhysRevLett.128.010605


the evolution into an eigenstate of the measurement
operators, i.e., a state with a fixed particle number
nl ¼ 0, 1 at each site. In the Hamiltonian framework, this
corresponds to a pinning of the density fluctuations [14].
This mechanism competes with the long-range hopping,
which establishes long-range coherent states, correspond-
ing to a pinning of the conjugate phase. The analytical
results align well with the numerical simulations, predict-
ing the critical value of p and the scaling exponents in the
long-range phase with high accuracy.
Microscopic model and effective Hamiltonian.—We

consider fermions on a ring of L sites (labeled s, m),
which are created and annihilated by the operators, ĉ†s ; ĉs
with fĉs; ĉ†mg ¼ δs;m, n̂s ¼ ĉ†s ĉs. The long-range hopping
Hamiltonian is

Ĥ ¼ −
X
s≠m

ts;mĉ
†
s ĉm; ts;m ¼ js −mj−p: ð1Þ

Its range is set by the exponent p and decreases with
larger p, reproducing nearest-neighbor hopping for p → ∞
[13,14,45]. We consider p > 1, ensuring a well-defined
thermodynamic limit with a non-singular fermion
dispersion.

In order to implement measurement of the wave func-
tion, we consider a standard continuous measurement
protocol, known as quantum state diffusion [46,47]. It
yields the stochastic Schrödinger equation (SSE),

djψfξs;tgi¼
�
−iĤdtþ

X
s

�
ξs;tM̂s;t−

γ

2
M̂2

s;tdt

��
jψfξs;tgi:

ð2Þ

Here, γ is the dimensionless monitoring strength, M̂s;t ¼
n̂s − hψfξs;tgjn̂sjψfξs;tgi are the monitoring operators and
ξs;t is a Gaussian white noise with zero mean ξs;t ¼ 0 and
short-ranged correlations ξs;tξm;t0 ¼ γdtδs;mδðt − t0Þ. The
overbar denotes the noise or trajectory average. The SSE
is realized by coupling the local observable n̂s to a
continuum of bath degrees of freedom, e.g., pointers
[47,48], which is read out continuously, e.g., via homodyne
detection [49]. Equation (2) is quadratic in ĉs; ĉ

†
s and

number conserving, and can be efficiently simulated with
Gaussian wave functions. We start from the half-filled Néel
state, and evolve the system until a stationary state is
reached.
The random measurement outcomes generate a large

configurational entropy: each allowed measurement out-
come appears with equal probability in the long-time limit.
This is reflected in the conditioned density matrix
ρc;t ≡ jψfξgihψfξgj, whose trajectory average always
yields a maximally mixed state ρc;t ∼ 1. The nontrivial
quantum dynamics of individual wave functions jψfξgi,
however, is encoded in nonlinear trajectory averages of ρc;t
[9,14,50,51]. Examples are the entanglement entropy or
conditioned correlation functions.
In order to access nonlinear observables analytically,

we apply the replica field theory for MIPTs put forward
in Ref. [14]. It introduces the product of two replicated
density matrices ρc;t ⊗ ρc;t, which allows us to separate the
measurement randomness (accumulating it in an effective
center-of-mass coordinate) from the inherent quantum
evolution of the wave functions [14]. For fermions in
one spatial dimension, the latter becomes particularly
accessible due to bosonization. The quantum degrees of
freedom are then mapped onto boson field operators
ϕ̂x; θ̂x, obeying the canonical commutation relation
½ϕ̂y; ∂xθ̂x� ¼ iδðx − yÞ. Here we extend the replica field
theory to long-range hopping fermions. The steady state
jψDi of the SSE (2) then is equivalent to the dark state of an
effective, non-Hermitian Hamiltonian, i.e.,

Ĥeff jψDi ¼ 0; with Ĥeff ¼ Ĥsr þ Ĥlr: ð3Þ

The Hamiltonian consists of a short-ranged part Ĥsr and
a long-ranged part Ĥlr with (see Ref. [52] for a derivation)

FIG. 1. (a) Free fermions on a chain with algebraic hopping
(1 < p < ∞) and continuousmonitoringwith rate γ. (b) Schematic
phase diagram: we detect and characterize three qualitatively
different phases. (c) Phase diagram as determined from the
effective central charge c for L ¼ 600. Circles indicate the points
discussed in Fig. 2. The color-coded vertical lines are studied in
(d),(e): comparison of the numerically determined scaling expo-
nents at γ ¼ 0.3 (blue), γ ¼ 1 (black) and γ ¼ 1.5 (red) with the
dark state (solid black line). (d) Correlation function exponent a.
Dashed lines yield an estimate for the point where the algebraic
scaling terminates and is replaced by exponential scaling. (e) En-
tanglement entropy growth exponent b. A vanishing exponent
corresponds to logarithmic scaling or area law. The critical points
found by this procedure are indicated as crosses in (c).
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Ĥsr¼
Z
x
fη−1ð∂xθ̂xÞ2þηð∂xϕ̂xÞ2−iλ½1−cos

ffiffiffi
8

p
ϕ̂x�g; ð4aÞ

Ĥlr ¼ iΔ
Z
x;jyj>1

jyj−2pf1þ cos ½
ffiffiffi
2

p
ðθ̂x − θ̂xþyÞ�g: ð4bÞ

Ĥsr covers both the nearest neighbor hopping and the
measurements of the local particle density. It is of the sine-
Gordon form with η2 ¼ 1 − ð2γi=πÞ and λ > 0, and has
been derived in Ref. [14]. Ĥlr contains hoppings across
more than one site ĉ†l ĉlþm ∼ eiðθ̂l−θ̂lþmÞ, m > 1 to leading
order in bosonization ĉ†l ĉlþm (see Ref. [52] for details).
The effective Hamiltonian has two remarkable features,

which emerge from the replica theory and leave clear
signatures in the fermion observables: First, due to the
monitoring Ĥlr is purely imaginary (Δ > 0), although the
original fermion hopping is Hermitian. Second, the effec-
tive hopping amplitude decays with an exponent ∼2p,
which is twice as large as for the microscopic amplitude.
Observables.—We characterize the steady state of the

SSE (2), in terms of trajectory averages of the von-Neumann
entanglement entropy S and of the connected density-density
correlation function C for fixed system size L,

Sðl; LÞ ¼ −Trρl log ρl; ð5aÞ

Cðl; LÞ ¼ hn̂xn̂xþli − hn̂xihn̂xþli ¼ jhĉ†xĉxþlij2: ð5bÞ

Here, ρl ¼ TrLnljψfξgihψfξgj is the reduced density matrix
of a subsystem of length l and the expectation value is
taken with respect to the numerically simulated steady
state jψfξgi.
Remarkably, both of these quantities can be analytically

calculated within the replica field theory (where L → ∞).
Their leading behavior is captured by a simple form [52],

SðlÞ ¼ 1

3
hϕ̂xϕ̂xþli; CðlÞ ¼ 1

2π2
∂2
l hϕ̂xϕ̂xþli: ð6Þ

Here the expectation value is taken with respect to the
dark state jψDi. The form of CðlÞ follows from
n̂x → ρ0 − ð∂xϕ̂x=πÞ, and the entropy formula is obtained
under the assumption of free Dirac fermions in Gaussian
states [14,15,55–57].
Dark state phase structure.—Based on the properties of

the steady state wave function, we qualitatively distinguish
three phases [see Fig. 1(b)]: (i) An area law phase for large
monitoring (γ⪆1) and short-ranged hopping (p > 3=2),
(ii) a conformally invariant (CFT) phase for small but
nonvanishing monitoring and short-ranged hopping
(p > 3=2), and (iii) a novel algebraic scaling phase due
to long-range hopping (p < 3=2). We show representative
results for each phase in Fig. 2. Additionally, isolated at
γ ¼ 0, a volume law is realized, crossing over to small
system sizes for γ > 0 [13].

Numerically, we combine two approaches to distinguish
the three phases, and their boundaries. (1) Informed by
logarithmic growth of the entanglement entropy in the CFT
phase, SðL=2; LÞ ∼ ðc=3Þ logðLÞ, we assume a logarithmic
scaling of SðL=2; LÞ and extract a size-dependent prefactor
cðLÞ. In the area-law phase and in the CFT phase, cðLÞ
saturates as a function of the system size. In the algebraic
phase it does not saturate, indicating faster than logarithmic
growth of Sðl; LÞ on large distances [see Fig. 1(c),
Fig. 3(a)], allowing us to localize the phase boundaries.
(2) We make a general ansatz for SðL=2; LÞ and CðL=2; LÞ,
including both algebraic and logarithmic scaling and
compute the best fit as a function of L (see Fig. 2). For
sufficiently large system sizes (up to L ¼ 2048), the fits
then converge to either a logarithmic or an algebraic form.
This yields consistent results for the scaling behavior in
each regime, as well as for the scaling exponents and the
location of the phase boundaries [see Figs. 1(d), 1(e)].
We further confirm these results by a third approach (see
Ref. [52]), where we vary the subsystem size l.

FIG. 2. Phase characterization of conformally invariant
(γ ¼ 0.3, p ¼ 1.25, orange), area-law (γ ¼ 2, p ¼ 5, light blue),
and algebraic scaling phase (γ ¼ 0.3, p ¼ 5, purple). (a) Half-
system entanglement entropy and best fit using the ansatz
S ¼ ðc=3Þ logðL=πÞ þ s0 þ BLb. The entropy always grows
slower than a volume law (∼L, dashed line). (b) The scaling
exponent of the correlation function at opposite ends of the
system is determined by fitting to C ¼ 1=½ALa þDL� (dashed
line ∼L−2).

FIG. 3. (a) Effective central charge c determined from a fit at
l ∈ ½L=4; 3L=4� for system sizes L ¼ 200, 400, 600, 800. For
1=p≲ 0.6, c saturates, while it diverges withL for 1 > 1=p≳ 0.6,
indicating faster than log entanglement growth. (b) Entanglement
entropy and density-density correlation function deep in the
algebraic scaling phase (γ ¼ 0.3, p ¼ 1.25) for L ¼ 1600. At
intermediate distances, where finite-size effects are negligible, the
algebraic scaling matches the analytical prediction b ¼ 2 − a.
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The three distinct, numerically observed phases are
predicted also analytically from the structure of Heff .
The Hamiltonian consists of a free part, quadratic in
θ̂x; ϕ̂x, and two competing nonlinearities, cos

ffiffiffi
8

p
ϕ̂x;

cos½ ffiffiffi
2

p ðθ̂x − θ̂yÞ�. The structure of the dark state jψDi
depends on whether or not those nonlinearities are relevant
on large distances. Both of them tend to suppress fluctua-
tions and to pin the fields in their argument to a fixed value.
However, θ̂x; ϕ̂x are conjugate and cannot be pinned
simultaneously. Therefore at most one nonlinearity can
be relevant. This gives rise to the three scenarios outlined
above: (i) in the area law phase, cos

ffiffiffi
8

p
ϕ̂x is relevant and

pins the density field ϕ̂x to a measurement eigenstate,
ϕ̂xjψDi ¼ ΦxjψDi with Φx ∈ R. (ii) in the CFT phase,
neither of the cosine terms are relevant and both can be
dropped. This yields a scale invariant free boson
Hamiltonian. (iii) in the algebraic scaling phase, the
long-range hopping cos½ ffiffiffi

2
p ðθ̂x − θ̂yÞ� is relevant and yields

a pinning of the relative phases θ̂x − θ̂xþl of the fermions.
This yields long-range correlations in θ̂x and increased
local density fluctuations ∼ϕ̂x.
The regimes (i) and (ii) are established for the limit

p → ∞ (numerically in Refs. [13,15] and analytically in
Ref. [14]). In the following, we thus focus on the new
algebraic regime (iii) and the phase transitions (i)↔(iii) and
(ii)↔(iii). Canonical power counting of the cosine vertex
yields the scaling dimension ½Δ� ¼ 3 − 2p [58]. It shows
that the long-range aspect of the hopping is irrelevant for
p > 3=2, and explains why the algebraic phase is located at
p < 3=2. The numerical simulations confirm the independ-
ence of the critical value pc ¼ 3=2 from the measurement
strength γ > 0, shown in Figs. 1(d), 1(e). This implies
that even frequent local measurements cannot overcome
the entanglement generation of a long-ranged kinetic
Hamiltonian, which we confirm analytically below.
Characterizing the phase transitions.—The three differ-

ent phases discussed above are separated from each other
by three different types of phase transitions (illustrated in
Fig. 1). Each phase transition features a characteristic
competition between different parts of the effective
Hamiltonian: the quadratic part ð∼η; η−1Þ tends to balance
the fluctuations of ϕ̂x; θ̂x, while the nonlinearities ð∼Δ; λÞ
suppress fluctuations of θ̂x or ϕ̂x. In order to reveal and
analyze this competition, we investigate the perturbative
renormalization group (RG) equations for η, Δ, λ.
The RG equations are obtained by rescaling spacetime

with a factor b ¼ e−s, i.e., dx; dt → bdx; bdt, with s
infinitesimal, and then integrating out fast modes with
momentum bΛ < jqj < Λ (with short distance cutoff
Λ ¼ π). The first order RG equations are (see Ref. [52])

∂sΔ ¼ ð3 − 2p − ηÞΔ; ð7Þ

∂sη ¼ −η2Δ: ð8Þ

Similar equations have been obtained in Ref. [32] for the
ground state of a Hermitian, long-range interacting XXZ
chain. Here, however, all couplings are complex, and the
canonical scaling dimension of the long-range coupling
Δ is modified compared to the Hermitian case [32] by
replacing p → 2p. The quantum phase transitions observed
here thus represent a generalization of ground state phase
transitions in unitary systems, to dark state MIPTs.
The RG equations (7), (8) yield several insights: (a) For

p > 3=2, the long-range hopping ∼Δ is always irrelevant
and any initial Δ ≠ 0 decays to zero exponentially fast
[ReðηÞ ≥ 0 is required for stability]. In this case, the
monitored long-range hopping dynamics are effectively
reduced to a nearest neighbor hopping model. This short-
ranged model undergoes a Berezinskii-Kosterlitz-Thouless
(BKT) transition from a critical to an area law phase as a
function of the measurement strength. This scenario is
discussed in detail in Refs. [13,14]. (b) For p ≤ 3=2, the
long-range hopping is relevant and strongly enhances
fluctuations of ϕx. This can be seen already on the level
of first order RG equations: any jΔj > 0 enforces a rapid
decrease of η in Eq. (8) [59]. This confirms the result from
canonical power counting. (c) Although Eq. (7) is remi-
niscent of a conventional sine-Gordon model (here for a
p-dependent canonical scaling dimension), the transition
between the critical and the long-range phase does not
match the BKT paradigm. The reason is the linear
appearance of Δ in Eq. (8), obtained at first order
perturbation theory. It gives rise to an unconventional
transition, which is characteristic for long-range coupled
systems [32]. (d) A similar argument applies for the
transition from the area law to the long-range phase.
This transition arises from the direct competition between
the two cosine terms. For a short-ranged sine-Gordon
model, this gives rise to a sequence of universality classes
depending on the factor in the nonlinearities, including the
Ising and parafermionic ones [60]. However, due to Eq. (8),
this is again different for the long-range model, where a
transition of this type has not yet been characterized.
Characterizing the algebraic scaling phase.—For

p ≤ 3=2, the long-range hopping, and the coupling Δ,
are relevant. The dark state jψDi, as well as the fermion
entanglement entropy and correlation functions, are then
modified by the impact of Ĥlr in Eq. (4). It pushes the
phases θ̂l of the fermion operators ĉl; ĉ

†
l to align with each

other, and to pin the argument of cos
ffiffiffi
2

p ðθ̂x − θ̂yÞ at small
values. Expanding Ĥeff up to second order in θ̂x yields (in
Fourier space)

Ĥeff ¼
Z
q
q2f−iΔpjqj2p−3θ̂−qθ̂q þ ηϕ̂−qϕ̂qg; ð9Þ

with a positive integration constant Δp (see Ref. [52]). The
terms ∼θ̂q in Ĥeff become more and more dominant as
q → 0. This governs the dark state jψDi at long wavelength
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(see Ref. [52]), such that the correlation functions and
the entanglement entropy acquire a p-dependent scaling
exponent [61],

SðlÞ ∼ Bjljb þ s0; b ¼ 3

2
− p; ð10Þ

CðlÞ ∼ Ajlj−a; a ¼ pþ 1

2
: ð11Þ

This analytical estimate is confirmed by the numerical
simulations very accurately, which is demonstrated in
Figs. 1(d),1(e) Fig. 2 (purple lines), and Ref. [52]. These
scaling exponents clearly differ from the volume law
b ¼ 1, found, for instance, in monitored random circuits
[4,51,62–67]. We find a slower growth of the entanglement
entropy b < 1=2, matching the scaling relation b ¼ 2 − a
[see Fig. 3(b)], implied by Eq. (6).
Conclusion.—Long-range dynamics leads to a novel

measurement-induced subvolume phase with a maximum
entanglement growth exponent S ∼

ffiffiffiffi
L

p
. Despite the

enhanced entangling effect of long range hoppings, the
system does not reach a volume law characteristic of an
ergodic phase. Indeed, a volume law is typically associated
with excited or generic states, located in the middle of the
spectrum of a Hamiltonian. Here, the trajectory wave
functions evolve to states that bear strong similarities to
ground states. In fact, it is intriguing to notice the similarity
of the phase structure to the ground state phase diagram of
long-range interacting spin models in one dimension [32],
where the density pinning effect of measurements is
replaced by nearest neighbor interactions. This suggests
a persistence of quantum ground state dynamics in the
trajectory wave function, which is reflected in the effective
cooling towards measurement-induced dark states in the
replica formalism. It will be exciting to identify the precise
criteria for the breakdown of the scenario reported here,
the occurrence of true volume law phases or classical vs
quantum phase transitions in trajectory ensembles, e.g., in
terms of the Gaussianity of the state present here, or of
the integrability of the generator of dynamics [68–70]. The
existence of a MIPT from an entangling to a disentangling
phase was observed recently in an experimental quantum
circuit [71]. Extending this setup in order to resolve the
entanglement scaling with distance, i.e., by introducing
spatially separated auxiliary qubits, could be a promising
step towards distinguishing different entangling phases.

We acknowledge support from the Deutsche Forschun-
gsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy Cluster of
Excellence Matter and Light for Quantum Computing
(ML4Q) EXC 2004/1 390534769, and by the DFG
Collaborative Research Center (CRC) 183 Project
No. 277101999—project B02. Furthermore we acknowl-
edge support by the European Research Council (ERC)

under the Horizon 2020 research and innovation program,
Grant Agreement No. 647434 (DOQS). M. B. acknowl-
edges funding via Grant No. DI 1745/2-1 under DFG SPP
1929 GiRyd. The code for our numerical computations
was implemented in JULIA [72]. We thank A. Chiocchetta,
M. Gullans, and D. Huse for fruitful discussions.

Note added.—Recently, we became aware of two comple-
mentary works on the MIPT in long-range coupled
Hamiltonian systems [73,74], where a critical hopping
exponent pc relatable to our pc ¼ 3=2 was identified.
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