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Quantum theory is commonly formulated in complex Hilbert spaces. However, the question of whether
complex numbers need to be given a fundamental role in the theory has been debated since its pioneering
days. Recently it has been shown that tests in the spirit of a Bell inequality can reveal quantum predictions
in entanglement swapping scenarios that cannot be modeled by the natural real-number analog of standard
quantum theory. Here, we tailor such tests for implementation in state-of-the-art photonic systems.
We experimentally demonstrate quantum correlations in a network of three parties and two independent
EPR sources that violate the constraints of real quantum theory by over 4.5 standard deviations, hence
disproving real quantum theory as a universal physical theory.
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The original formulation of quantum theory postulates
states and measurements as operators in complex Hilbert
spaces and uses tensor products to model system compo-
sition [1,2]. However, already some pioneers of the theory
favored a real quantum theory over a complex quantum
theory, i.e., using only real numbers in its mathematical
formulation [3]. The general debate on the role of com-
plex numbers in quantum theory has continued into the
present [4–11].
Another long-standing debate in the foundations of

quantum theory, nowadays settled, concerned the existence
of local hidden variable theories to describe our world. Bell
pioneered the idea of studying correlations in the outcome
statistics of experiments to infer fundamental properties of
their underlying physics [12]. In recent years, experimental
implementations of such Bell tests have successfully ruled
out local hidden variable theories [13–17]. Surprisingly, it
was further shown that a natural generalization of Bell’s test
in a network can, contrary to their traditional counterparts
[18,19], distinguish complex quantum theory from real
quantum theory [20]. In a network in which parties are
connected through several independent sources [21–23],

real quantum theory does not agree with all predictions of
complex quantum theory [20]. This paves the way for
experimentally distinguishing between the two theories in a
quantum network based on independent sources. Here and
in the rest of this paper, real quantum theory refers to a
theory in which the real Hilbert spaces of independent
systems are combined by the tensor product.

FIG. 1. The entanglement swapping scenario. Two sources, that
may at most be classically correlated, distribute an entangled pair
between Alice and Bob, and Bob and Charlie, respectively. Alice,
Bob, and Charlie each select one of three, four, and six inputs,
respectively, and perform corresponding quantum measurements
on their respective shares. Each measurement gives one of two
possible outcomes.
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For this purpose, the simplest quantum network, describ-
ing the entanglement swapping scenario, suffices. As
shown in Fig. 1, two independent sources each emit an
EPR pair, the first one shared between Alice and Bob, and
the second shared between Bob and Charlie. If Bob projects
both of his particles onto an entangled basis, then Alice and
Charlie are left in an entangled state when conditioned on
Bob’s outcome [24]. By appropriately combining the input-
output probabilities of the network we arrive at a Bell-type
correlation function, whose maximum value in real quan-
tum theory can be upper bounded. Any experimental
violation of this upper bound would disprove the universal
validity of real quantum theory [20].
Photons emerge as a natural platform for realizing

quantum networks of scalable distance as they are suitable
carriers of quantum information. Therefore it is natural to
use a photonic quantum network to test real quantum
theory. Moreover, the pivotal requirement of independent
sources can be stringently met in photonic implementa-
tions, whereas a recent similar experiment based on super-
conducting qubits implemented both sources on the same
chip [25]. However, photonic implementations come with
the difficulty that the protocol proposed in Ref. [20]
requires a complete Bell state measurement. Even though
such a measurement can be implemented using super-
conducting qubits [25], it is not amenable to the tools of
standard linear optics [26,27], unless additional degrees of
freedom are introduced and controlled [28]. Here, we
resolve this issue by developing a new protocol that uses
a partial Bell state measurement [29,30].
Consider the scenario illustrated in Fig. 1. We focus on a

quantum protocol in which each source emits the EPR state
jΦþi ¼ ½ðj00i þ j11iÞ= ffiffiffi

2
p �. Alice, Bob, and Charlie inde-

pendently perform measurements with random inputs
x ∈ f0; 1; 2g, y ∈ f0; 1; 2; 3g, and z ∈ f0; 1; 2; 3; 4; 5g,
respectively. Their measurement outcomes are labeled
a; b; c ∈ fþ1;−1g. Alice’s three measurements are chosen
as fσX; σY; σZg, and Charlie’s six measurements are chosen
as f½ðσX þ σYÞ=

ffiffiffi

2
p �; ½ðσX − σYÞ=

ffiffiffi

2
p �; ½ðσY þ σZÞ=

ffiffiffi

2
p �;

½ðσY − σZÞ=
ffiffiffi

2
p �; ½ðσX þ σZÞ=

ffiffiffi

2
p �; ½ðσX − σZÞ=

ffiffiffi

2
p �g, where

σX, σY , σZ are Pauli observables. Bob’s four measurements
each correspond to discriminating one of the four Bell
states. Specifically, the outcome b ¼ 1 corresponds respec-
tively to a projection onto the Bell state jΦþi, jΦ−i ¼
½ðj00i − j11iÞ= ffiffiffi

2
p �, jΨ−i¼ ½ðj01i− j10iÞ= ffiffiffi

2
p � and jΨþi ¼

½ðj01i þ j10iÞ= ffiffiffi

2
p �. As in any Bell test, by suitably

combining the probabilities pða; b; cjx; y; zÞ, we define a
Bell-type correlation function,

W ¼ 1

5

X

3

y¼0

Ty −
4

5

X

3

y¼0

pðb ¼ 1jyÞ; ð1Þ

where y ¼ y2y1 ∈ f00; 01; 10; 11g in binary notation
and Ty¼ð−1Þy1þy2ðS11yþS12yÞ−ð−1Þy1ðS21y−S22yÞ þ

ð−1Þy1þy2ðS15yþS16yÞþð−1Þy2ðS35y−S36yÞ−ð−1Þy1ðS23yþ
S24yÞþð−1Þy2ðS33y−S34yÞ, with Sxzy ¼

P

a;c¼�1 acp
ða; b ¼ 1; cjx; y; zÞ. Using the tools developed in
Ref. [20], the value of Eq. (1) in real quantum theory is
upper bounded by (see Ref. [31] for the derivation)

WRQT ≲ 0.7486: ð2Þ

This bound holds even if Alice, Bob, and Charlie are
allowed global shared classical randomness, i.e., the two
sources may be classically, but not quantumly, correlated.
In turn, complex quantum theory predicts the value

WCQT ¼ 6
ffiffiffi

2
p

− 4

5
≈ 0.8971: ð3Þ

Hence an experimental observation of WEXP > 0.7486 is
sufficient to rule out real quantum theory.
A schematic of our optical quantum network implement-

ing the states and measurements above is depicted in Fig. 2.
By driving a type-0 spontaneous parametric down-
conversion (SPDC) process in a periodically poled MgO
doped lithium niobate (PPLN) crystal with the pump laser
at λp ¼ 779 nm [38], each EPR source probabilistically
emits a pair of photons in state jΦþi¼½ðjHHiþjVViÞ= ffiffiffi

2
p �

at the phase-matched wavelengths 1560 nm (signal) and
1556 nm (idler), where jHi and jVi represent respectively
the horizontal and vertical polarization states. The two EPR
sources each deliver their signal photon to Bob and their
idler photon to Alice and Charlie, respectively. To realize
the protocol measurements, Bob lets the two signal photons
sequentially pass polarization beamsplitters (PBS) and
directs the four outputs to single-photon detectors (D3,
D4, D5, D6) via optical fibers. The half-wave plates
(HWPs) before and after the first PBS are adjusted to
the proper orientations upon receiving y. The resulting two-
photon coincidence detection between D3 and D5 or D4

and D6 assigns b ¼ þ1 and prepares Alice and Charlie to
be in the Bell state jΦþi, jΦ−i, jΨ−i, or jΨþi according to
the random input y ∈ f0; 1; 2; 3g, respectively. Similarly,
upon receiving the random inputs x and z, Alice and
Charlie each respectively adjust the relevant HWP and
quarter-wave plate (QWP) to perform the single-qubit
measurements outlined above. The single-photon detection
events at each detector are time tagged to produce the
correlation analysis (more detail can be found in Ref. [31]).
In order to falsify real quantum theory, it is essential to

stringently meet the requirement that the two EPR sources
are independent up to classical synchronization [20]. In our
network experiment, the time reference of all events is set to
the 15 GHz internal clock of a pulse pattern generator
(PPG) in the EPR source S1, which triggers the PPG in the
EPR source S2. In each EPR source, the PPG sends triggers
at a rate of 250 MHz to enable the distributed feedback
(DFB) laser to switch on the electric current. Switching
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from below to above the lasing threshold, the DFB laser
emits a 2 ns laser pulse at the wavelength of 1558 nm with a
randomized phase per trigger [38]. We further shorten the
pulse width to 90 ps with an intensity modulator (IM). After
passing through an erbium-doped-fiber-amplifier, a PPLN
waveguide to double the frequency, and a wavelength-
division multiplex filter, the produced laser pulses at
λp ¼ 779 nm drive the SPDC process as described in
above, for which we keep the photon-pair production rate
at about 0.0025 per trigger to strongly mitigate the multi-
photon effect. We pass photons through fiber Bragg
gratings (FBGs) with bandwidths of 3.3 GHz before
entering single-photon detectors to suppress the spectral
distinguishability between photons from different EPR
sources. Quantum tomography measurements indicate that

the state fidelity is greater than 0.99 for the two-photon
states produced at EPR sources S1 and S2 with respect to
the targeted Bell state jΦþi and greater than 0.96 for the
two-photon state of Alice and Charlie with respect to the
Bell states jΦþi, jΦ−i, jΨþi, and jΨ−i after entanglement
swapping, respectively. The lack of coherence between
pulses of the same laser and of different lasers ensures that
the independence of the sources is stringently enforced in
the network experiment.
We switch the measurement settings every 30 seconds,

reserving the first 10 seconds to reset the measurement
settings, including quantum random number generation and
wave plate rotation, and the remaining 20 seconds for data
collection. The average four-photon coincident detection
event rate is 1.24 per switching cycle. We collect 26 954

FIG. 2. Schematic of the experiment. The setup consists of two EPR sources, S1 and S2, and three measurement nodes, Alice, Bob, and
Charlie. In each EPR source, the laser pulse is injected into a Sagnac loop interferometer containing a PPLN crystal to produce a pair of
photons in Bell state jΦþi via the SPDC process [38]. The EPR source delivers the signal photon to Bob and the idler photon to Alice
(Charlie). Bob performs measurement with the two signal photons, which prepares Alice and Charlie in a Bell state. Alice and Charlie
measure the idler photons according to the inputs from the quantum random number generator. PPG in EPR source S1 triggers the PPG
in EPR source S2; DHWP: HWP for dual wavelength; SPBS: spatial PBS; D1, D2, D3, D4, D5, D6, D7, D8 are superconducting
nanowire single-photon detectors (SNSPDs); FPBS: fibre PBS; DWDM: dense wavelength division multiplexer.
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four-photon coincidence events in 21 742 switching
cycles. Since we only record Bob’s outcome b ¼ þ1,
we use our characterization of the efficiency of the
detection device to estimate the associated probability.
For each cycle, we estimate pðb ¼ þ1jyÞ through the
quantity ½ðNb¼þ1jyNANCÞ=ðNACNABNBCÞ�, where NAC,
NAB, NBC are the two-party photon coincidence numbers,
NA and NC are the one-party photon detection numbers,
and Nb¼þ1jy is the number of four-photon coincidence
events when Bob obtains outcome b ¼ þ1 (derivation
details can be found in Ref. [31]). In Figs. 3(a) and 3(b),
we compare the 3 × 4 × 6 ¼ 72 different experimentally
measured values of Sxzy, averaged with respect to different
cycles, with their corresponding theoretical values. The
results uphold a good agreement. Putting it all together, we
then obtain WEXP ¼ 0.8508� 0.0218, which exceeds the
upper boundWRQT ≈ 0.7486 set by real quantum theory by
4.70 standard deviations [Fig. 3(c)]. We also perform an
emulation of the experiment based on complex quantum
theory. Consider that the EPR source emits a nonideal
state, ρEPR ¼ vEjΦþihΦþj þ ð1 − vEÞI=4, and the photons
from the two EPR sources interferewith a nonideal visibility
vI . With vE ¼ 0.9909 and vI ¼ 0.9844 determined in the
experiment, complex quantum theory predictsW ¼ 0.8404,
which is consistentwith the experimental resultWEXP within
a standard deviation [Fig. 3(d)].

We have experimentally demonstrated that real quantum
theory is incompatible with the observed data in our optical
quantum network experiment. The independent sources in
the network guarantee that the observed correlations cannot
be simulated by real quantum theory [20]. The rapid
development in photonic or hybrid quantum technologies,
in particular with regard to more efficient detectors, faster
switching, higher-quality entanglement sources, and
longer-distance entanglement distribution, leaves us opti-
mistic of even more sophisticated future experiments.
Research in quantum networks has enjoyed a rapid growth
thanks to the role they are likely to play in quantum
communications, distributed quantum computing, and the
future quantum Internet. In addition to these potential
applications, our work highlights that they are also power-
ful frameworks for devising and implementing tests of
fundamental aspects of quantum theory.

D. T. acknowledges financial support through a DOC
Fellowship of the Austrian Academy of Sciences (ÖAW).
T. P. L. and M.W. are supported by the Lise Meitner
Fellowship of the Austrian Academy of Sciences
(Projects No. M 2812-N and No. M 3109-N, respectively).
Z.-D. L., Y.-L. M., S.-J. Y., and J. F. are supported by the
Key-Area Research and Development Program of
Guangdong Province, Grants No. 2020B0303010001 and
No. 2019ZT08X324, and Guangdong Provincial Key

FIG. 3. Experimental results. The ideal (a) and experimentally measured (b) values Sxzy ¼ Σa;c¼�1acpða; b ¼ 1; cjx; y; zÞ. (c) The
values ofW in different scenarios.WRQT: real quantum theory,WCQT: complex quantum theory,WEXP: experimental result in our optical
quantum network. (d) An emulation of the experiment based on complex quantum theory. The value of the red dot is given by
WEXP −WRQT. Error bars shown in (c) and (d) represent 1 standard deviation in the experiment.

PHYSICAL REVIEW LETTERS 128, 040402 (2022)

040402-4



Laboratory Grant No. 2019B121203002. Z. W. is sup-
ported by the National Key R&D Program of China
(No. 2021YFE0113100, No. 2018YFA0306703) and
Sichuan Innovative Research Team Support Fund
(2021JDTD0028). M.-O. R. and A. T. are supported by
the Swiss National Fund Early Mobility Grants
No. P2GEP2 191444 and No. P2GEP2 194800, respec-
tively. A. T. acknowledges funding from the Wenner-Gren
Foundations. M.-O. R and A. A acknowledge support from
the Government of Spain (FIS2020-TRANQI and Severo
Ochoa CEX2019-000910-S), Fundacio Cellex, Fundacio
Mir-Puig,Generalitat deCatalunya (CERCA,AGAURSGR
1381 andQuantumCAT), theERCAdGCERQUTE, and the
AXA Chair in Quantum Information Science. N. G. is
supported by the Swiss National Center of Competence
in Research-The Mathematics of Physics (Swiss NCCR
SwissMap).

*These authors contributed equally to this work.
†Fanjy@sustech.edu.cn

[1] P. A. M. Dirac, The Principles of Quantum Mechanics,
4th ed., The International Series of Monographs on Physics,
No. 27 (Oxford University Press, New York, 1958).

[2] J. von Neumann, Mathematical Foundations of Quantum
Mechanics, Investigations in Physics, No. 2 (Princeton
University Press, Princeton, NJ, 1955).

[3] A. Einstein, Letters on Wave Mechanics: Correspondence
with H.A. Lorentz, Max Planck and Erwin Schrödinger,
edited by K. Przibram (Philisophical Library/Open Road,
New York, 2011).

[4] E. C. Stueckelberg, Quantum theory in real Hilbert space,
Helv. Phys. Acta 33, 727 (1960).

[5] W. K. Wootters, Statistical distance and Hilbert space, Phys.
Rev. D 23, 357 (1981).

[6] W. K. Wootters, Local accessibility of quantum states, in
Complexity, Entropy and the Physics of Information, Santa
Fe Institute Studies in the Sciences of Complexity Vol. VIII,
edited by W. Zurek (CRC Press, Boca Raton, 1990).

[7] L. Hardy and W. K. Wootters, Limited holism and real-
vector-space quantum theory, Found. Phys. 42, 454 (2012).

[8] A. Aleksandrova, V. Borish, and W. K. Wootters, Real-
vector-space quantum theory with a universal quantum bit,
Phys. Rev. A 87, 052106 (2013).

[9] V.Moretti andM.Oppio,Quantumtheory in realHilbert space:
How the complex Hilbert space structure emerges from
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