
Ruling Out Real-Valued Standard Formalism of Quantum Theory

Ming-Cheng Chen ,1,2,3,* Can Wang,1,2,3,* Feng-Ming Liu,1,2,3,* Jian-Wen Wang,1,2,3 Chong Ying,1,2,3

Zhong-Xia Shang,1,2,3 Yulin Wu,1,2,3 M. Gong,1,2,3 H. Deng,1,2,3 F.-T. Liang,1,2,3 Qiang Zhang,1,2,3

Cheng-Zhi Peng,1,2,3 Xiaobo Zhu ,1,2,3 Adán Cabello ,4,5 Chao-Yang Lu ,1,2,3 and Jian-Wei Pan1,2,3
1Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,

University of Science and Technology of China, Hefei, Anhui 230026, China
2CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics,

University of Science and Technology of China, Shanghai 201315, China
3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China

4Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain
5Instituto Carlos I de Física Teórica y Computacional, Universidad de Sevilla, E-41012 Sevilla, Spain

(Received 30 November 2021; accepted 7 December 2021; published 24 January 2022)

Standard quantum theory was formulated with complex-valued Schrödinger equations, wave
functions, operators, and Hilbert spaces. Previous work attempted to simulate quantum systems using
only real numbers by exploiting an enlarged Hilbert space. A fundamental question arises: are the
complex numbers really necessary in the standard formalism of quantum theory? To answer this
question, a quantum game has been developed to distinguish standard quantum theory from its real-
number analog, by revealing a contradiction between a high-fidelity multiqubit quantum experiment
and players using only real-number quantum theory. Here, using superconducting qubits, we faithfully
realize the quantum game based on deterministic entanglement swapping with a state-of-the-art fidelity
of 0.952. Our experimental results violate the real-number bound of 7.66 by 43 standard deviations. Our
results disprove the real-number formulation and establish the indispensable role of complex numbers
in the standard quantum theory.
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Physicists use mathematics to describe nature. In
classical physics, the real number appears complete to
describe the physical reality in all classical phenomenon,
whereas the complex number is only sometimes
employed as a convenient mathematical tool. In quantum
mechanics, the complex number was introduced as the
first principle in Schrödinger’s equation and Heisenberg’s
commutation relation [1,2]. The complex-valued wave
function has been shown to represent the physical
reality of quantum objects under certain physically
plausible assumptions [3]. Experimentally, the real and
imaginary parts of the wave function have been directly
measured [4]. Today, quantum mechanics with complex-
valued wave functions seems the most successful theory
to describe nature.
On the other hand, starting with von Neumann in 1936,

many works [5–13] have shown that it is possible to
universally simulate quantum systems using only real
numbers by exploiting an enlarged Hilbert space in various
alternative formalisms of quantum theory. For example, by
adding an extra qubit j � ii ¼ ðj0i � ij1iÞ= ffiffiffi

2
p

, a single-
quantum system with a complex density matrix ρ
and Hermitian operator H can be simulated through
trðρHÞ ¼ trðρ̃ H̃Þ, where ρ̃ and H̃ are real and of
the form:

ρ̃ ¼ ðρ ⊗ j þ iihþij þ ρ� ⊗ j − iih−ijÞ=2;
H̃ ¼ H ⊗ j þ iihþij þH� ⊗ j − iih−ij:

Therefore, it is interesting to ask a fundamental question
why the complex number is necessary in the standard
formalism of quantum theory. The standard quantum theory
is established by the following four axioms [14]: (1) A pure
quantum system is described by a unit complex vector in a
Hilbert space. (2) The state space of a composite quantum
system is the tensor product of the state spaces of the
component systems. (3) The dynamics of a closed quantum
system is described by a unitary operator acting on the
state vector. (4) A physical observable is described by a
Hermitian operator, and the measurement outcome obeys
the Born rule.
In this work, we intend to investigate the real-number

formalism of standard quantum theory, which satisfies
the formalism in the above four axioms but replaces the
complex vectors and operators in the Hilbert space by
corresponding real vectors and operators, respectively.
In this formalism, the dimension of real Hilbert space is
not restricted to be the same as the complex Hilbert space.
A distinguishing feature of the standard quantum theory
from other quantum theories is at the second axiom, where
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the Hilbert space of composite quantum systems has a
tensor-product structure.
Recently, Renou et al. developed an elegant scheme to

provide an observable effect in quantum experiments to
distinguish between the two formalisms [15]. The scheme is
a Bell-like [16–20] three-party game based on deterministic
entanglement swapping [21]. The new theory predicts that
the players obeying real-number formalism of standard
quantum theory cannot obtain the maximal score that the
standard complex-valued quantum theory allows, thus being
falsified. An assumption used in the proposal [15] is that
the composite quantum state produced by two independent
sources is the tensor product of the two independent
quantum states, which has been ensured by the second
axiom of standard quantum theory. Very recently, it has been
shown that the second axiom can be deduced from the first
and fourth axioms, and is not independent [22]. Specifically,
the tensor product structure of composite Hilbert space can
be induced by experimentally accessible observables [23].
Figure 1(a) shows an illustration of the three-party

quantum game for Alice, Bob, and Charlie. First, two pairs
of Einstein-Podolsky-Rosen (EPR) entangled qubits [24] are
distributed between Alice and Bob, and between Bob and
Charlie, respectively. Bob then performs a joint Bell-state
measurement (BSM) on his 2 received qubits, which
randomly projects them into one of the four Bell states:

jϕþi ¼ ðj0ij0i þ j1ij1iÞ=
ffiffiffi
2

p
;

jψþi ¼ ðj0ij1i þ j1ij0iÞ=
ffiffiffi
2

p
;

jϕ−i ¼ ðj0ij0i − j1ij1iÞ=
ffiffiffi
2

p
;

jψ−i ¼ ðj0ij1i − j1ij0iÞ=
ffiffiffi
2

p
:

The four results are correspondingly registered as b ∈
f00; 01; 10; 11g. Alice performs a single-qubit local meas-
urement on her received qubit in the eigenstate bases
of an operator Ax (x ∈ f1; 2; 3g) which yields an outcome
a ∈ f0; 1g. Similarly, Charlie measures his qubit using
operator Cz (z ∈ f1; 2; 3; 4; 5; 6g) and obtains his outcome
c ∈ f0; 1g. The score Γ of the game is defined as the
weighted sum of the conditional joint probability distribution
PðabcjxzÞ, given by

Γ ¼
X

abc;xz

wabc;xzPðabcjxzÞ;

where wabc;xz ∈ f−1;þ1g are the weights [25], abc ∈
f0; 1g⊗4 are the bit strings of measurement results, and xz ∈
f11; 12; 21; 22; 13; 14; 33; 34; 25; 26; 35; 36g are 12 combi-
nations of local single-qubit measurement settings x and z.
In the standard complex-valued quantum theory, we set

Alice’s operator as Ax ∈ fZ; X; Yg, where Z, X, and Y
are the standard Pauli matrices, and Charlie’s operator as
Cz ∈ fZ � X; Z � Y; X � Yg= ffiffiffi

2
p

, where the score of the
game reaches its maximum of 6

ffiffiffi
2

p
(≈8.49). However, if

one assumes the players can only use real-number quantum
resources (real-number states and real-number operations),
the numerically found optimal score [15] has an upper
bound of 7.66, which sits between the classical limit of 6
and the quantum limit of 6

ffiffiffi
2

p
, as shown in Fig. 1(b). This

contradiction opens a way to a direct experimental test to
distinguish between the complex-number and real-number
representations of standard quantum theory.
A generic quantum circuit for the experimental test is

shown in Fig. 2(a), which involves three deterministic
entangling gates for preparing two maximum entangled

6.0

(a)

(b)

7.66 8.49
Classical

Physics
Real-valued

Quantum
Theory

Complex-valued
Quantum

Theory

FIG. 1. A nonlocal game to disprove the real-number model of quantum mechanics. (a) A three-party Bell-like game based on
entanglement swapping. Two EPR pairs are distributed between Alice and Bob, and between Bob and Charlie. The measurement
settings are labelled as x, y, and z, and the outcomes are a, b, and c, respectively. Bob performs a complete Bell-state measurement.
Alice and Charlie perform single-qubit local measurements. (b) The score of the nonlocal game divides the physics into three regimes:
classical, real-number quantum mechanics, and complex quantum mechanics, which are experimental testable. The score Γ is calculated
from the weighted sum of the conditional joint probability distribution.
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EPR pairs (1–2 and 3–4) and implementing the BSM
between qubits 2 and 3. Very high quantum state and gate
fidelities are required to surpass the real-number players
[15]. We design and fabricate a superconducting quantum
processor [see Fig. 2(b) for its optical image] to implement
the quantum game. To keep Alice’s and Charlie’s qubits
(1 and 4) isolated from each other, we use an I-shape
transmon qubit design [30] to increase the spacing of
the qubits for reducing the non-neighbor coupling, and with
large frequency detuning, the maximum population
exchange is smaller than 10−9 [25]. The qubits are arranged
in a linear array [31], and each has individual control and
readout [32,33]. The qubits work at the transition frequency
f01 ∼ 5 GHz and are capacitively coupled to their nearest
neighbors with g=2π ∼ 5 MHz.

The single qubit is controlled by microwave pulses
on the Rabi driving (XY) line and fast flux-bias current
on the frequency tuning (Z) line. Each qubit is dispersively
coupled to a readout resonator (R1–R4) and is read out
through a single coplanar waveguide. At the idle frequency,
the qubits’ average lifetime T1 is measured to be 34.8 μs,
and the average coherence time T�

2 is 8.0 μs. The qubits are
initialized by idling 200 μs to decay into the ground states.
The average fidelity of single-qubit gates using 23 ns
driving pulses is measured to be 99.88%. The average error
in the readout of the 16 computational bases after cor-
recting the local bit-flip error is 0.34%.
To implement the quantum circuit in Fig. 2(a), we design

the control pulse sequences as shown in Fig. 2(c). The
entangling interactions are in the form of ISWAP gates
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FIG. 2. Experimental implementation. (a) The quantum circuit used to perform the quantum game. The EPR pairs and BSM are
realized by a 2-qubit ISWAP operation with additional single-qubit gates. (b) Optical image of the superconducting quantum
processor. The qubits (Q1–Q4) are placed in a linear array and have direct nearest-neighbor couplings. Each qubit has an XY driving
and a Z tuning line and has an individual readout resonator (R1–R4) for measurement. (c) The experimental control pulses. The
single qubit is rotated by Rabi resonance, and 2 qubits are entangled by tuning the qubits into resonant spin exchange. Two EPR
pulse sequences are used to prepare the two pairs of EPR entangled states. And the BSM pulse sequence is used to implement the
joint Bell-state measurement. (d) The magnitude of density matrix of the product state of the two EPR pairs after the EPR pulses.
The state fidelity is 97.5%. (e) The magnitude of density matrix of the 4-qubit entangled state after the BSM pulses. The state fidelity
is 94.6%. (f) The entangled states generated between Alice and Charlie conditional on the BSM outcomes. All are above 92.7%
threshold fidelity, and the average is 95.2%.
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where the qubits fully exchange their populations as j01i →
ij10i; j10i → ij01i in ∼50 ns by tuning 2 nearest-neighbor
qubits into resonance [34,35]. The quantum process fidelity
of the ISWAP gate is measured to be 96.7% with state
preparation and measurement errors.
To characterize our experimental process, we make

tomographic measurements of the quantum entangled
states created after each step. First, after the first two
EPR pulses [see Fig. 2(c), at the point of ∼120 ns], we
measure and reconstruct the density matrix of the product
state of the two EPR pairs, as shown in Fig. 2(d). The
experimental data agree well with the ideal case with
fidelity of 0.975(1). Next, after the third entangling pulse
[at the point of ∼230 ns in Fig. 2(c)], the 4 qubits become a
fully entangled state. The measured density matrix in
Fig. 2(e) shows a fidelity of 0.946(1) compared with the
perfect state. Finally, projective measurements on qubit 2
and 3 are performed, which swap the entanglement onto the
independent and noninteracting qubit 1 and 4. Conditioned
on random outcomes of the BSM, qubits 1 and 4 are
projected into one of the four Bell states correspondingly,
whose quantum state fidelities are measured and plotted in
Fig. 2(e). The obtained average fidelity is 0.952(1), well
above the threshold of [15] ∼0.927.
Having verified the high quantum operation and state

fidelities, we proceed to test the quantum game and
measure the conditional joint probability distributions
PðabcjxzÞ. Alice and Charlie’s qubits are first unitarily
transformed using appropriate single-qubit gates [25] and
then measured in the computational bases. There are 12
different combinations of measurement settings and 16
possible measured bit strings. The main experimental
results are plotted as a 12 × 16 probability distribution
matrix in Fig. 3(a) together with the ideal values. Summing

over the obtained probability PðabcjxzÞ with their corre-
sponding weight [25], our quantum experiment gives a
score of 8.09(1). As shown in Fig. 4(b), the result violates
the upper bound set by real-number quantum theory by
43 standard deviations, which provides strong evidence to
disprove the real-valued standard formalism of quantum
theory.
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Note added in the proof—Recently, we became aware of a
related work using photons [36].
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