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We investigate the magnetic excitations of elemental gadolinium (Gd) using inelastic neutron scattering,
showing that Gd is a Dirac magnon material with nodal lines atK and nodal planes at half integer l. We find
an anisotropic intensity winding around the K-point Dirac magnon cone, which is interpreted to indicate
Berry phase physics. Using linear spin wave theory calculations, we show the nodal lines have nontrivial
Berry phases, and topological surface modes. We also discuss the origin of the nodal plane in terms of a
screw-axis symmetry, and introduce a topological invariant characterizing its presence and effect on the
scattering intensity. Together, these results indicate a highly nontrivial topology, which is generic to
hexagonal close packed ferromagnets. We discuss potential implications for other such systems.
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Topological materials exhibiting quasiparticles with
linear band crossings effectively described by the Dirac
equation play an important role at the frontier of condensed
matter physics [1,2]. The electronic structure of graphene
established it as the prototypical example of a fermionic
Dirac material [1,3]. It was subsequently realized that
related physics can occur in systems with bosonic quasi-
particles including among others phonons [4], photons
[5,6], and more recently, magnons [7–12]. The interesting
topological features of magnon bands are often associated
with band degeneracies that can be understood as a
consequence of symmetries describable by spin-space
groups [13,14]. Magnon band structures can realize analogs
of, e.g., Chern insulators and topological semimetals
[10–12] and can host both Dirac [7,8,15] or Weyl magnons
[16–20], as well as exhibit extended one-dimensional nodal
degeneracies [15,21,22] and triply degenerate points [23].
Consequently, magnetic systems can also exhibit phenom-
ena similar to those found in topological electronic materi-
als, for example, a magnon thermal Hall effect arising from
gapped bands with topologically nontrivial Chern numbers
[24–29]. In this work we describe a system with a magnon
nodal plane degeneracy, thus further extending the fruitful
analogy between topological magnets and topological
electronic systems [30,31].
Dirac band crossings have been observed in the layered

local-moment magnetic systems CrI3 [32] and CoTiO3

[33,34]. These systems are related to the honeycomb
ferromagnet, a simple bipartite lattice that is the pro-
totypical example of a two-dimensional Dirac magnon
system. One strong indicator of nontrivial topology is an
anisotropic “winding” intensity around the Dirac point, as

seen in CoTiO3 [35,36]. Dirac magnons have also
been observed in the three-dimensional antiferromagnet
Cu3TeO6 [37,38].
In this Letter we use inelastic neutron scattering to

measure the magnon spectrum of elemental gadolinium
(Gd), showing directly that it is a Dirac material. Gd is a
highly isotropic ferromagnet with the hexagonal close
packed (hcp) structure that forms a simple three-
dimensional bipartite lattice. We demonstrate experimen-
tally that the magnon bands in Gd (i) exhibit Dirac nodal
lines with a clear anisotropic winding intensity and non-
trivial Berry phase, and (ii) interestingly also show a nodal
plane. We discuss the protection of the nodal plane by a
combination of a screw-axis symmetry and effective time
reversal symmetry, and introduce aZ2 topological invariant
to characterize it. Our results suggest that the entire class of
rare earth hcp ferromagnets is a simple model system for
topological magnetism.
The Gd hcp structure and its reciprocal lattice are

illustrated in Fig. 1. Gd orders ferromagnetically at Tc ¼
293 K [39–41]. Although Gd is metallic, the first three
valence electrons are completely itinerant and the rest
are localized, leaving an effective Gd3þ at each site [42].
In the half-filled f shell, the orbital angular momentum is
effectively quenched leaving S ¼ 7=2magnetism [43] with
near-perfect isotropy and spin-orbit coupling that vanishes
to first order. (Small anisotropies do exist in Gd [44] which
influence the direction of the ordered moment [40], but
these are of the order 30 μeV [45]—so small that they have
never been measured with neutrons.) This makes Gd an
ideal material for studying Heisenberg exchange on a
hexagonal lattice.
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The Gd spin wave spectrum was first measured by
Koehler et al. in 1970 [46]; but only along the ðhh0Þ,
ðhh̄0Þ, ðh00Þ, and ð00lÞ directions. These data show a
linear magnon band crossing at K ¼ ð1=3; 1=3; 0Þ, indicat-
ing a Dirac node and suggesting the possibility of nontrivial
topology. The temperature dependence of the Gd magnons
was measured in the 1980s [47,48], but only along the same
symmetry directions as Ref. [46]. Here we have used
SEQUOIA, a modern time-of-flight spectrometer [49,50] at
the SNS [51], to measure the Gd inelastic neutron spectrum
over the entire Brillouin zone volume. The sample was a
12 g isotopically enriched 160Gd single crystal (in fact, the
same 99.99% enriched crystal as was used in Ref. [46];
naturally occurring Gd is highly neutron absorbing) aligned
with the hhl plane horizontal. Measurements were carried
out at 5 K with incident energies Ei ¼ 50 and 100 meV.
Data were processed with Mantid software [52]; see the
Supplemental Material [53] and Ref. [54] for further
details. The resulting full dataset allows one to directly
see topological features in the spectrum. The data were
thoroughly analyzed to determine an accurate spin
exchange Hamiltonian: this is discussed in detail in a
separate paper [54] focusing on the Gd magnetic inter-
actions. Here we focus on the topological properties of the
Gd magnon bands.
Data along high-symmetry directions are shown in Fig. 2

alongside the linear spin wave theory (LSWT) fit. As this
comparison demonstrates, the refined model closely repro-
duces the measured spectrum. Because of this agreement
and the high spin length (S ¼ 7=2), LSWT is expected to
provide a good description of Gd.
From a topology perspective, there are two particularly

noteworthy features in the Gd scattering: a nodal line
degeneracy at h ¼ k ¼ 1=3 extending along l, and a nodal
plane degeneracy at l ¼ 1=2. We will discuss each in turn.
The first feature in the data is a linear band crossing at K,

shown in Fig. 2. As shown in Fig. 3, it extends along l,
making it a nodal line. This band crossing shows an
anisotropic intensity pattern [Figs. 2(e)–2(h)], where the

intensity follows sinusoidal modulation winding around the
Dirac cone, inverted above and below the crossing point. A
similar intensity winding was seen in CoTiO3 [33,34], and
is understood to be a signature of the nodal line and
nontrivial Berry phase around ð1=3; 1=3;lÞ [35,36]. (This
is similar to a signature of Berry phase physics in graphene
seen using polarization-dependent angle-resolved photo-
emission spectroscopy [55].) Unlike CoTiO3, the offset
angle of the intensity winding is zero to within error bars:
no anisotropy or off-diagonal exchange shifts the intensity
away from the ðhh0Þ line.
To more firmly establish the topological nature of the

nodal line, we turn to linear spin-wave theory [56,57] and a
simplified J1 − J2 − J3 model that qualitatively captures
the main features of the full fitted model, including the
band crossings,

H ¼ J1
X
hi;ji

Si · Sj þ J2
X
⟪i;j⟫

Si · Sj þ J3
X

hhhi;jiii
Si · Sj; ð1Þ

(a)

(e)

(g) (h)

(f)

(b)

(c) (d)

FIG. 2. Measured and fitted spin wave spectra of Gd. Panels (a)
and (c) show the measured Gd spectra along high-symmetry
directions. Panels (b) and (d) show spin wave theory calculated
spectra using the best fit Hamiltonian [54]. The top row shows the
scattering at l ¼ 1, the second row at l ¼ 2. Note the linear band
crossing at K. Panels (e) and (f) show constant energy slices
above and below the band crossing, showing “intensity arcs.”
Panel (g) shows the intensity binned around the circles in (e) and
(f), fitted to a sin function. (h) The “Dirac node” dispersion
surface, with colored circles indicating the slices in panels (e)–(f).

(a) (b)

FIG. 1. (a) hcp crystal structure of Gd. The lattice is bipartite,
with interpenetrating layers of ABAB-stacked triangular lattices.
(b) First Brillouin zone of Gd. The dark blue lines delineate
the asymmetric unit in reciprocal space, the red dots show the
high symmetry points (notated on the right), and the green
regions indicate nodal lines at h ¼ k ¼ 1=3 and nodal planes
at l ¼ �1=2.
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where Jn represents the nth nearest neighbor exchange.
Jn < 0 indicates ferromagnetic exchange. (For the values
of the exchange couplings, see Ref. [54].) J1 and J3 couple
the two sublattices, whereas J2 couples only sites within the
same sublattice (within ab planes). This model includes
three of the four largest magnitude exchange interactions
that were determined in the full fit. (Since J4 has a lower
coordination number than J1;2;3, it only produces a smaller
l-dependent contribution to the energy.) Details of these
calculations are shown in the Supplemental Material [53].
The hcp lattice is inversion symmetric, and the spin-

wave Hamiltonian has an effective time-reversal symmetry
[17,53]. Together, these symmetries guarantee that the
Berry curvature vanishes everywhere, and thus hcp Gd
does not have non-trivial Chern numbers or Weyl magnons.
Nevertheless, the same symmetries protect the magnon
nodal lines, which are pinned to Brillouin zone corners by
threefold rotation symmetry about ĉ, C3z. The topology of
the magnon nodal lines can be classified in terms of the
Berry phase about a closed contour C,

γm½C� ¼
I
C
dk ·AmðkÞ; ð2Þ

where Am ¼ ihumðkÞj∇kjumðkÞi is the Berry connection,
and jumðkÞi ∼ ½∓ expðiϕkÞ; 1�T is the mth energy eigen-
state of the magnon Hamiltonian. If C is pierced once by a
nodal line, it is trivial if γm ¼ 0 and nontrivial if γm ¼ π.
Direct evaluation for Eq. (1) for Gd shows γm½C� ¼ �π for
contours surrounding the nodal lines at K and K0 [53], thus
demonstrating their topological nature. It is the nontrivial
phase ϕk of the wave function jumðkÞi that generates the
Berry phase and the anisotropic intensity, which is propor-
tional to 1� cosðϕkÞ (plus sign for upper band) and winds
about K [53].
A second noteworthy feature is a nodal plane. As shown

in Fig. 3, the Dirac cone flattens and then inverts as l
increases (plotting between l ¼ 1 and l ¼ 2—the cone at
l ¼ 0 is not fully visible due to kinematic constraints of the
experiment). In fact, every integer shift in l brings an
inversion in the Dirac cone intensity, and every half-integer
l gives a degeneracy in the modes at all h and k. This
degeneracy, shown in Figs. 3(e) and 3(f) where the Dirac
cone is completely flattened, gives rise to a nodal plane.
Above and below this nodal plane, there is a discontinuous
shift in the Dirac cone intensity. This is caused by the phase
ϕk discontinuously flipping by π upon passing through the
nodal plane. As we discuss in detail in the Supplemental
Material [53], this nodal plane arises in the hcp ferromagnet
from the combination of effective time-reversal and non-
symmorphic twofold screw symmetry fC2z; ð0; 0; 1=2Þg,
connecting the two sublattices. Spin orientation plays no
role in the Heisenberg limit. Any magnetic Hamiltonian
which maintains these symmetries will also have a sym-
metry-protected nodal plane.

We can describe the nodal plane more formally by
defining a Z2 topological invariant, which changes dis-
continuously across the nodal plane. Such an invariant
can either be defined in terms of the Pfaffian of a trans-
formed magnon Hamiltonian [53], or in terms of wave
function properties. Here we focus on the latter. We define
νmk ≡ sgnhumðkÞjσ1jumðkÞi, where σ1 is the first Pauli spin
matrix. If we choose a reference wave vector k and k0 ≡
kþ ð0; 0; δkzÞ the difference 1=2jνk − νk0 j counts the
number of times the nodal plane is crossed (and thus the
number of times the intensity inverts) modulo two.
Although the nodal plane is not expected to produce a

topological surface state [31,58], the nodal lines are. To
investigate this, we theoretically considered the simplest
geometry for surface modes: a slab of a finite number of
triangular lattice layers along ĉ as shown in Fig. 1. This was
done for the full fitted LSWTmodel (26 neighbor exchange

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 3. Evolution of the Dirac cone at K ¼ ðð1=3Þð1=3ÞlÞ as a
function of l. The white dashed lines are calculations using the
fitted LSWT Hamiltonian, while the background color map
shows experimental neutron scattering data. The two columns
show perpendicular cuts through the K point. As l goes from 1 to
2, the cone flattens and inverts, such that the intensity at l ¼ 1 is
opposite of l ¼ 2. The two LSWT bands are degenerate at K
throughout this evolution, yielding a nodal line. Note the
emergence of a nodal plane at l ¼ 1.5, where the two magnon
bands degenerate everywhere in the hk plane. To the right are
schematics of the Dirac cone, where intensity inverts after
crossing the nodal plane.
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terms) using the SpinW software [59] by creating a super-
cell geometry with and without periodic boundary con-
ditions in the c direction (the c termination was generated
by creating a blank space at the top of the physical layers,
effectively breaking periodicity). The result is shown in
Fig. 4 for 20 Gd unit cells (40 triangular lattice layers).
LSWT [Fig. 4(b)] shows the presence of a clear surface
mode, emerging from the bulk modes projected into the 2D
surface Brillouin zone. Since inelastic neutron scattering is
not a surface probe we cannot resolve the same mode in the
data, but nevertheless find qualitative agreement with the
bulk modes [Fig. 4(a)].
It should be emphasized that neither of these degeneracies

—the nodal line at h ¼ k ¼ 1=3 and the nodal plane at
l ¼ 1=2—depend sensitively upon the details of the mag-
netic exchange Hamiltonian. On the hcp lattice, they appear
with both the simplest nearest neighbor ferromagnetic
exchange interaction, orwith any number of further neighbor
exchanges—so long as they are all Heisenberg exchanges
and the ground state remains ferromagnetic, preserving
effective time-reversal symmetry (this was first noted by
Brinkman in 1967 [13] and the topological consequences
have been explored in Ref. [14]). Thus, although the further
neighbor exchange interactions are important for under-
standing thewiggles in Gd’s magnon dispersion, they are not
important for understanding the topology.
These experiments and calculations were carried out on

Gd, which has near-perfect isotropic Heisenberg exchange.

However, because of the intrinsic connection between
symmetry, degeneracy, and topology [13,14,60–62] similar
topological features can be expected in more anisotropic
ferromagnetic hcp metals such as Tb [63,64], Dy [63,65],
and hexagonal Co [66]. (However, for Co one must
consider the effects of itinerancy and continuum scattering
likely eliminate the observability of Dirac magnons in hcp
Co [67–69].) From a topological magnon perspective, it is
particularly interesting to consider the addition of inter-
actions breaking the symmetries protecting the nodal
degeneracies. One choice which can break the effective
time-reversal symmetry is the Dzyaloshinskii-Moriya
(DM) exchange interaction [70]

H ¼
X
ij

D · ðSi × SjÞ; ð3Þ

where D is the DM vector. Like on the honeycomb lattice
[12], it is symmetry allowed on the hcp lattice second
nearest neighbor bonds.
It is easily shown on the level of LSWT that easy axis or

easy plane single-ion anisotropy preserves the extended
degeneracies as the effective time reversal symmetry,
originating from spin-space symmetries, is preserved,
whereas DM exchange with out-of-plane D vector lifts
the K-point and nodal plane degeneracy while leaving a
grid of l ¼ 1=2 nodal lines, giving rise to potential chiral
surface magnon modes [54]. However, the true situation is
more complicated for anisotropic rare earth hcp ferromag-
nets such as Tb or Dy. In such cases, the strong spin-orbit
coupling may induce other symmetry-allowed off-diagonal
exchange, which would in turn affect the surface modes.
This means that that inducing chiral surface modes in these
materials may prove a challenge. Full characterization of
other hcp ferromagnets spin exchange Hamiltonian is
necessary to determine the possibility of directional surface
modes.
In conclusion, we have shown that the magnetic exci-

tation spectrum of elemental gadolinium contains nodal
line and nodal plane degeneracies, which are directly
visible in the experimental data. The nodal line around
K shows anisotropic intensity characteristic of nontrivial
topology, and Berry phase calculations confirm this to be
so. We also identify a nodal plane in the data, derive the
symmetry requirements for such a feature, and propose an
invariant describing its topology. These results have impli-
cations not just for Gd, but for all hcp ferromagnets, as the
topological features are generic to the lattice. Other
consequences of the hcp topology may exist—particularly
concerning the nodal plane—but these are left for
future study.

The U.S. Department of Energy will provide public
access to these results of federally sponsored research in
accordance with the DOE Public Access Plan [71].

(a)

(b)

FIG. 4. Surface magnons in Gd. (a) In-plane high-symmetry
cuts of 5 K Gd scattering integrated from l ¼ 1 to l ¼ 2.
(b) Linear spin wave theory calculated modes for a 20-layer Gd
slab using the best fit Hamiltonian. Note that, because of the finite
extent along ĉ, l is no longer a good quantum number, and the
magnon modes from each layer form a continuum between l ¼ 1
and l ¼ 2, such that the magnon modes strongly resemble the
integrated data in panel (a). The c-axis termination surface
magnon mode, shown in red, lies outside this continuum at
lower energies, and is thus distinct from bulk magnons.
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