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Symmetry plays a key role in modern physics, as manifested in the revolutionary topological
classification of matter in the past decade. So far, we seem to have a complete theory of topological
phases from internal symmetries as well as crystallographic symmetry groups. However, an intrinsic
element, i.e., the gauge symmetry in physical systems, has been overlooked in the current framework. Here,
we show that the algebraic structure of crystal symmetries can be projectively enriched due to the gauge
symmetry, which subsequently gives rise to new topological physics never witnessed under ordinary
symmetries. We demonstrate the idea by theoretical analysis, numerical simulation, and experimental
realization of a topological acoustic lattice with projective translation symmetries under a Z2 gauge field,
which exhibits unique features of rich topologies, including a single Dirac point, Möbius topological
insulator, and graphenelike semimetal phases on a rectangular lattice. Our work reveals the impact when
gauge and crystal symmetries meet together with topology and opens the door to a vast unexplored land of
topological states by projective symmetries.

DOI: 10.1103/PhysRevLett.128.116802

The concepts of symmetry and topology have permeated
into almost all branches of physics [1–6]. In topological
matters, the “topology” refers to the nontrivial global
structures in the phase winding of wave functions in
momentum space. Symmetries constrain the possible topo-
logical structures [7], and it is clear that their significance
lies in how the symmetries act on the wave functions or, in
mathematical terms, how they are represented in the wave
function space.
There are two important points that have not been

appreciated in the study of topological states of matter.
First, under a gauge field, crystal symmetries will be
projectively represented (see Supplemental Material for a
brief introduction on projective symmetry [8]), and this
impacts the algebra of symmetry operations [10–12]. This
can be understood from the analogy with Aharonov-Bohm
effect [13]: The phase of wave function for different paths
is modified by the gauge field, which, in turn, revises the
representation of spatial symmetries. Second, the gauge
fields can actually be intrinsic and ubiquitous for real
physical systems, not necessarily the applied magnetic field
as in the Aharonov-Bohm effect. Particularly, the Z2 gauge
field is intrinsic to artificial periodic systems with time-
reversal symmetry T—i.e., the hopping amplitudes are real
numbers that can take either positive or negative signs—
and, moreover, it can be precisely engineered with current
technology [14–19].

To demonstrate the idea, let us consider the simple 2D
lattice model in Fig. 1. Here, each rectangular plaquette
carries a π gauge flux. Figure 1(a) shows a specific gauge
configuration, where each red (blue) colored bond has a
negative (positive) hopping amplitude. Note that one is free
to choose a gauge configuration for technical convenience,
since all physics depends only on the flux configuration.
The fundamental symmetries for the 2D lattice are the two
primitive translations Lx and Ly. Without the gauge field,
the translations commute with each other, which is the
algebra forming the foundation of solid state physics.
However, one notes that, under the Z2 gauge field, this
fundamental algebra is modified to

fLx; Lyg ¼ 0; ð1Þ

because moving around a plaquette will endow the wave
function with a π phase. An immediate consequence is that
each band is twofold degenerate for a generic momentum,
since Eq. (1) resembles the algebra of the Pauli matrices.
More interestingly, at point M ðπ; πÞ of the Brillouin zone
(BZ), Lx, Ly, and T together with the imaginary unit i
generate a real Clifford algebra C0;4, which has a unique
four-dimensional representation [8]. This means that the
system must have a fourfold degenerate Dirac point at M
[see Fig. 1(d)], described by the Dirac model:
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hDðqÞ ¼ qxΓ1 þ qyΓ2: ð2Þ

Here, Γμ with μ ¼ 1; 2;…; 5 are the five Hermitian 4 × 4

Dirac matrices satisfying fΓμ;Γνg ¼ 2δμν14. A concrete
representation may be given by Γ1 ¼ τ3 ⊗ σ2, Γ2 ¼
τ2 ⊗ σ0, Γ3 ¼ τ1 ⊗ σ0, Γ4 ¼ τ3 ⊗ σ1, and Γ5 ¼ τ3 ⊗ σ3,
with τ’s and σ’s being two sets of the Pauli matrices. It is
important to note that this Dirac point is enabled solely by
the projective translation symmetries and T, and there is
only a single Dirac point in the BZ, which contrasts with all
previous cases where Dirac points must require additional
point group symmetries and they cannot exist as a single
Fermi point in 2D T-invariant systems [20].
Breaking the primitive translation such as Ly by dime-

rization will destroy the Dirac point and drive a topological
phase transition. Two representative configurations are

shown in Figs. 1(b) and 1(c). In the Dirac model in
Eq. (2), the two dimerization patterns correspond to pertu-
rbation terms m1Γ3 and m2iΓ2Γ5, respectively.
Interestingly, the case in Fig. 1(b) realizes a Möbius

topological insulator. In the bulk, a band gap opens, and the
band structure is characterized by a Möbius Z2 topological
invariant enabled by Lx and the sublattice symmetry Γ5. In
the eigenspace of Lx, the HamiltonianHðkÞ is diagonalized
into two blocks: HðkÞ ¼ diag½h1ðkÞ; h2ðkÞ�, which are
connected by the sublattice symmetry Γ5. The topological
invariant is given by [11]

ν ¼ 1

2π

Z
½0;2πÞ×S1

d2kF þ 1

π
γð0Þ mod 2: ð3Þ

Here, F is the Berry curvature, and γð0Þ is the Berry phase
on the kx ¼ 0 path in the BZ. Both are defined for the
valence bands of h1ðkÞ. The hallmark of this insulator is
that its edge parallel to the x direction will have a Möbius
edge band; i.e., the band has a twisted structure similar to
the edge of a Möbius strip [see Fig. 1(e)]. Furthermore, the
band is completely detached from the bulk bands, distinct
from the usual topological insulators where the edge bands
must connect the bulk bands. We note that similar Möbius
states were discussed in a few limited cases, but all require
complicated nonsymmorphic symmetries [21–24], in con-
trast to the case here based on the projective translation
symmetry.
The alternative dimerization in Fig. 1(c) splits the four-

fold Dirac point into two twofold nodal points along the ky
direction. While both primitive translational symmetries Lx
and Ly are broken, the sublattice symmetry Γ5 is preserved.
Hence, there is a topological charge defined by the winding
number w ¼ ð1=4πiÞ HC dk · trΓ5H−1ðkÞ∇HðkÞ on a circle
C surrounding a Fermi point. The nontrivial topological
charge leads to a flat edge band on the edge parallel to x,
connecting the projections of the two Fermi points
[Fig. 1(f)]. One may note that this phase is similar to
graphene, but there are actually important differences. First,
twofold linear nodal points are known to be common to
hexagonal lattices (including graphene), but here they
occur in a rectangular lattice. Second, the points in
graphene are pinned at the high-symmetry points, whereas
the points here are unpinned; i.e., they can freely move on
the Y-M path without breaking any symmetry.
Without dimerization [Fig. 1(a)], the primitive unit cell

actually consists of two sites. Then, there are two twofold
nodal points at ½�ðπ=2Þ; π�, and the fourfold Dirac point for
the doubled unit cell is actually folded from the two
twofold nodal points. We have chosen the doubled unit
cell, because we wanted to discuss the criticality of
topological phases from two dimerization patterns.
One may wonder, as the primitive unit cell has already

corresponded to a twofold Dirac semimetal phase, why we
make the alternative dimerization. The answer is without
dimerization the twofold nodal points have no topological

Dirac point

X

Y M

Möbius edge states

Γ

Twofold nodal point

Edge flat band

FIG. 1. Illustration of the models. The red (blue) bonds denote
negative (positive) hopping amplitudes. Thus, each plaquette has
a π flux. (a) Both primitive translational symmetries Lx;y are
preserved. The band structure features a fourfold degenerate
Dirac point as shown in (d). (b) The staggered dimerization
pattern which preserves Lx. The edge bands with the Möbius twist
are illustrated in (e). (c) The alternative dimerization pattern with
both primitive translation symmetries broken. It generates a
graphenelike semimetal phase as illustrated in (f). The bottom
panel of (d)–(f) illustrates the spectra for an open edge along x.
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charge, and, therefore, there is no edge flat band. Thus, it is
remarkable that the graphenelike topological semimetal can
be realized on a rectangular lattice. Meanwhile, it is
noteworthy that here the projectively represented trans-
lation symmetries play an essential role, but for graphene
the twofold degeneracy is inherited from the D3 symmetry.
Now we proceed to demonstrate the above phenomena in

an acoustic crystal. Our design, as depicted in Fig. 2(a),
consists of cuboid acoustic resonators (colored in orange)
and coupling tubes (colored in red and blue). This kind of
design has been used to construct various topological tight-
binding Hamiltonians in acoustics, such as Weyl semimet-
als [25–29] and higher-order topological insulators [17–
19,30–33]. However, the underlying projective crystal
symmetries and their resultant topological physics were
never revealed. Here, the cuboid resonator has a size of
64 mm × 32 mm × 8 mm, supporting a dipolar mode at
around 2680 Hz. Couplings between the resonators are
enabled by thin tubes with square cross sections. The whole
structure is hollow, filled with air, and surrounded by
hard walls.
Here, positive and negative couplings are realized by

placing the coupling tubes at different sides of the dipolar
mode’s nodal line. In Fig. 2(a), tubes that enable positive
and negative couplings are colored in blue and red,
respectively. In such a configuration, this acoustic lattice
carries π flux per plaquette, as required. Moreover, the
coupling strengths can be engineered by tuning the widths

of the coupling tubes. Thus, the tight-binding model with
both primitive translation symmetries Lx;y, as well as two
aforementioned dimerization patterns, can all be realized.
In the absence of coupling dimerization (i.e., all the

coupling tubes have the same width), the bulk bands are all
nearly twofold degenerate over the entire BZ except for the
M point, where a fourfold Dirac point approximately
appears, as can be seen from Fig. 2(b). Then, we proceed
to transit the fourfold degenerate Dirac criticality into other
topological phases by introducing dimerization. We impose
a staggered dimerization pattern [see Fig. 2(a)] by letting
wc1 ¼ 3.2 mm and wc2 ¼ 8 mm. Since the primitive trans-
lation symmetry Ly is broken, the degeneracy atM is lifted
and a band gap is opened, as shown in Fig. 2(c). Next, we
look into the boundary modes in this gapped phase. On the
open edge parallel to x, one clearly observes two crossing
edge bands inside the bulk band gap and, particularly, fully
detached from the bulk bands [see Fig. 2(e)]. These edge
bands, as discussed previously, actually represent a single
band forming a Möbius twist. In contrast, for the open edge
along the y direction, Lx is broken, and, therefore, no in-gap
edge modes are observed [see Fig. 2(d)]. All these simu-
lation results agree well with the predicted phenomena [8].
We then conducted experiments to probe the signatures

of the Möbius topological insulator. As shown in Fig. 3(a),
a sample with 20 × 10 resonators was fabricated through
3D printing. We first measure the bulk transmission to
confirm the existence of the band gap. The measured

FIG. 2. (a) Schematic of designed acoustic lattice, which is made by cuboid resonators (orange) and coupling tubes (red and blue). The
lattice constant a ¼ 160 mm. Other parameter values are given in the main text. (b),(c) Simulated bulk bands for wc1 ¼ wc2 ¼ 3.2 mm
(b) and wc1 ¼ 3.2 mm and wc2 ¼ 8 mm (c), respectively. (d),(e) Simulated dispersions for structures with the open boundary condition
along the x direction but the periodic boundary condition along the y direction, and vice versa, respectively. Bands colored in blue (red)
correspond to bulk (edge) modes. In both simulations, the lattice consists of ten unit cells. (f) Eigenmode patterns for the two edge
modes marked by “I” and “II” in (e).
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acoustic pressure, as plotted in Fig. 3(b), shows two peaks
separated by a gap. The frequency range of the measured
gap matches well with the band gap found in simulation
[shaded in gray in Fig. 3(b)]. Then, we measure the
transmission on the edges of the sample. For the y edge,
the measured spectrum [blue curve in Fig. 3(c)] is similar to
the bulk transmission spectrum. We observed only two
separated peaks lying at frequencies corresponding to bulk
bands, which is consistent with the simulation given in
Fig. 2(d) showing that there are no in-gap edge modes. In
contrast, the transmission spectrum obtained on the x edge
is significantly different from the previous two. As given by
the red curve in Fig. 3(c), there is only one peak in the
spectrum. Furthermore, this peak is inside the band gap,
consistent with the consequence of the Möbius-twisted
edge band on the x edge.
We also mapped out the field distribution to further

confirm the existence of the Möbius edge band. In this
experiment, a speaker was fixed at the center of the bottom
edge [denoted by the blue star in Fig. 3(d)], and a micro-
phone scanned the whole sample to obtain both the
amplitude and phase of sound at each resonator [8].
Figure 3(d) shows the measured pressure at 2680 Hz
[corresponding to the peak frequency of the x-edge
spectrum in Fig. 3(c)]. As can be seen, the sound wave
is mainly localized at the edge. The pressure at both sides of
the source is found to be similar, which reflects the fact that
edge bands have both positive group velocity and negative

velocity branches. We note that the excited edge modes
decay fast along the edge due to the background loss
caused by material absorption, which is a common issue in
coupled acoustic resonator lattices. Furthermore, the edge
dispersion can be directly visualized by performing Fourier
transformation on the measured field distribution data. As
can be seen from Fig. 3(e), the Fourier spectrum (color
map) agrees well with the simulated edge dispersion (solid
white lines). These experiment results in both real space
and momentum space, together with the transmission
spectra, confirm the existence of the Möbius edge band.
We also implemented a different dimerization pattern,

following that in Fig. 1(c), which leads to a graphenelike
semimetal phase. The acoustic unit cell with this alternative
dimerization is shown in Fig. 4(a), where the coupling
tubes enabling weak and strong couplings have widths
wc1 ¼ 3.2 mm and wc2 ¼ 5 mm, respectively. The corre-
sponding bulk dispersion, as given in Fig. 4(b), clearly
shows the emergence of two twofold nodal points on
M0-M. As discussed above, these two Fermi points, similar
to the ones in graphene, carry nontrivial topological charges
that lead to edge bands connecting the projections of the
two Fermi points. To see this, we simulated a strip with the
periodic boundary condition along x and the open boun-
dary condition along y. As shown in Fig. 4(c), we indeed
observe edge bands (red curves) connecting the projections
of the Fermi points. We again conducted acoustic pressure
measurement on the edge resonators under an edge

FIG. 3. (a) A photo of fabricated sample with 20 × 10 resonators. The inset shows one unit cell. The scale bar is 160 mm. (b) Measured
acoustic pressure when the speaker and microphone are placed at two different resonators inside the bulk. The gray region denotes the
simulated bulk band gap. (c) Measured acoustic pressure when the speaker and microphone are placed at two different resonators on the
x edge (red curve) and the y edge (blue curve). (d) Measured acoustic pressure distribution at 2680 Hz. Both the color and size of the
circles denote measured amplitude. (e) Measured edge dispersion. The white lines indicate simulated edge bands.
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excitation. The resulting Fourier spectrum is plotted in
Fig. 4(d). As can be seen, the frequencies and momenta of
high-intensity regions match well with the edge band in
Fig. 4(c).
In conclusion, we demonstrated a new class of topo-

logical phases protected by projective crystal symmetries in
an acoustic system. A Dirac semimetal enforced by
projective translation symmetries was shown to give rise
to a Möbius insulator and a graphenelike semimetal under
different perturbations. Our results point to a promising yet
unexplored direction to discover novel topological phases.
There are various ways to generalize the results in this
work. First, while our demonstration is in acoustics, the
idea can also be realized in other classical systems utilizing
electromagnetic waves and elastic waves [14–16] or,
similarly, in electric circuits [34]. Second, it would be
interesting to explore more possibilities by increasing the
system dimension and considering other types of lattices
and projective symmetries [10,12]. Besides, our system
also provides a natural platform to study the effect of non-
Hermiticity through introducing deliberately designed dis-
sipation [35].
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