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In the presence of gauge symmetry, common but not limited to artificial crystals, the algebraic structure
of crystalline symmetries needs to be projectively represented, giving rise to unprecedented topological
physics. Here, we demonstrate this novel idea by exploiting a projective translation symmetry and
constructing a variety of Möbius-twisted topological phases. Experimentally, we realize two Möbius
insulators in acoustic crystals for the first time: a two-dimensional one of first-order band topology and a
three-dimensional one of higher-order band topology. We observe unambiguously the peculiar Möbius
edge and hinge states via real-space visualization of their localiztions, momentum-space spectroscopy of
their 4π periodicity, and phase-space winding of their projective translation eigenvalues. Not only does our
work open a new avenue for artificial systems under the interplay between gauge and crystalline
symmetries, but it also initializes a new framework for topological physics from projective symmetry.
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Introduction.—A recurring theme in physics has been
the discovery and classification of distinctive phases of
matter. In this regard, symmetry and topology are particu-
larly powerful. For instance, the discovery of topological
band insulators has taken the research community by storm
[1–3]. After the celebrated topological classification [4,5]
for the tenfold way of Altland-Zirnbauer symmetry classes
including time-reversal, particle-hole, and/or chiral sym-
metries, the classification has been generalized to systems
with spatial symmetries [6–9]. Recently, following the
theory of (crystalline) symmetry indicators or topological
quantum chemistry, high-throughput screening of topo-
logical materials has been performed in the inorganic
crystal structure database, and thousands of candidates
have been identified [10–12]. Therefore, the list and
classification of topological crystalline phases seem to
be exhaustive and concluded.
Here, we use the translation symmetry to exemplify that,

in the presence of gauge symmetry [13], the algebraic
structure of crystalline symmetries needs to be projectively
represented and yields novel topological band physics
[14–16]. We first construct theoretically a variety of
two- and three-dimensional (2D and 3D, respectively),
gapped and gapless, topological phases that feature
Möbius-twisted boundary states (in which the boundary
spectra are entangled and twisted in momentum space)
protected by the projective translation symmetry. We then
realize experimentally a 2D first-order Möbius insulator
(MI) and a 3D higher-order MI (HOMI) for the first time.
Particularly, we provide compelling evidence for the
projective Möbius topology not only by observing the
Möbius edge and hinge states in position, momentum, and

energy domains, but also in the phase domain by revealing
the winding of the projective translation eigenvalues.
Elucidating the important interplay between gauge and
crystalline symmetries, our findings initialize a framework
for topological band physics rooted in projective symmetry,
given that gauge symmetry is common and abundant in
both artificial crystals and interacting systems.
Tight-binding models.—We start with an elementary 2D

model [Fig. 1(a)] that features projective symmetries.
The model Hamiltonian is H2D ¼ tð1 þ cos kzÞσ0ρ1 þ
t sin kzσ0ρ2 þ ðγx þ λx cos kxÞσ1ρ3 þ λx sin kxσ2ρ3 (t; γx;
λx > 0), where t is the hopping in the z direction, γx
and λx are the intra- and intercell hoppings, respectively, in
the x direction, and σ and ρ are Pauli matrices acting on the
x and z sublattices, respectively. As depicted in Fig. 1(a),
the positive (negative) hoppings are indicated with red
(blue) lines, and each plaquette encloses a π flux [16].
While H2D does not respect the primitive translation
Lz ¼ σ0ð 0

eikz
1
0
Þ, the inversion P ¼ σ1ρ1, or the Z2 gauge

transformation G ¼ σ0ρ3 due to the π-flux threading, the
projective translation Lz ¼ GLz and the projective inver-
sion are symmetries of the system. Additionally, switching
the sublattices S ¼ σ3ρ3 is a chiral (particle-hole) sym-
metry of the system. Because of ½Lz; H2D� ¼ 0, H2D
decouples into two Su-Schrieffer-Heeger (SSH) chains
in the x direction of opposite on-site energies �m ¼
�2t cosðkz=2Þ and opposite Lz eigenvalues l�¼�eikz=2,
as illustrated in Fig. 1(a). Thus, this system has a Z2

invariant ν and is a MI for γx < λx [Figs. 1(b) and 1(c)].
Remarkably for the MI phase, the two edge bands in the kz
direction are detached from the bulk and linearly cross at
kz ¼ π and E ¼ 0 [Fig. 1(c)], forming a Möbius strip in the
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edge Brillouin zone and resembling the fractional Josephson
effect mediated by two Majorana bound states [17]. The
degeneracy at kz ¼ π is Kramers-like and enforced by the
projective translation-time symmetry LzT, since ðLzTÞ2 ¼−1 at kz ¼ π. Its pinning to zero energy is a consequence of
the chiral symmetry. The two edge states of opposite group
velocities are, respectively, locked with the two Lz eigen-
values l�, as indicated in Fig. 1(c). As a hallmark of the
Möbius topology, l� exhibit a 4π periodicity, again resem-
bling the fractional Josephson effect [17]. Notably, the bulk
bands are twofold degenerate [Fig. 1(b)], reminiscent of the
spin-orbit-coupled system with the parity-time symmetry.
Our system is spinless, yet the projective algebra P2 ¼ −1
enforces ðPTÞ2 ¼ −1and requires a Kramers degeneracy of
the bulk states at every momentum. Significantly, it is the
projective inversion symmetry that effectively switches the
spinless and spinful nature [18].
Generically, we can extend the 2D model to con-

struct a variety of novel 3D Möbius phases arising from
Z2 gauge-induced projective symmetries and their alge-
braic relations. Consider an AB-stacked 3D Hamiltonian,

H3D ¼ ρ3h2D þ t sin kzρ2I þ tð1þ cos kzÞρ1I, where h2D
is a 2D monolayer Hamiltonian (replacing the SSH chain
above), ρ are Pauli matrices acting on the two layer
sublattices, t is the interlayer hopping, and I is the identity
matrix of the x-y plane. In this elaborate layer-by-layer
construction, the phase boundary of H3D inherits from that
of h2D, given that the dispersion relation between the two
models E2

3D ¼ E2
2D þ 4t2cos2ðkz=2Þ. Next, we show that,

by appropriately selecting h2D, H3D can enjoy gapped and
gapless, first-order and higher-order, projective Möbius
topology.
Figure 1(d) sketches a model in which the 2D monolayer

realizes the quadrupole model [19,20], i.e., h2D ¼ ðγx þ
λx cos kxÞτ0σ1 þ λx sin kxτ0σ2 þ ðγy þ λy cos kyÞτ1σ3 þ
λy sin kyτ2σ3 (γx; γy; λx; λy > 0), where σ and τ are Pauli
matrices acting on the x and y sublattices, respectively. The
symmetries and their algebraic structures of this 3D model
are the same as the 2D MI model. The 3D model has two
Z2 invariants ν̃x and ν̃y (see Supplemental Material [21]),
and for ðν̃x; ν̃yÞ ¼ ð1; 1Þ, i.e., γx=λx < 1 and γy=λy < 1, it
realizes a HOMI with protected hinge states. This can be

(a) (b) (c)

(d) (e) (f)

FIG. 1. 2D first-order Möbius insulator and 3D higher-order Möbius insulator from projective symmetry. (a) Unit cell of the 2D MI
(left) and its effective decomposition (right). (b) Bulk band structures calculated with hoppings t ¼ 1 and γx ¼ λx ¼ 2 (magenta dashed
lines) and t ¼ γx ¼ 1 and λx ¼ 4 (black solid lines). Each band is twofold degenerate. (c) Edge-projected band structure in the z
direction for the gapped case in (b) featuring a Möbius twist. (d) Unit cell of the 3D HOMI (left) and its effective decomposition (right).
(e) Bulk band structure exemplified by a HOMI with hoppings t ¼ γx ¼ γy ¼ 1 and λx ¼ λy ¼ 4. Each band is fourfold degenerate.
(f) The hinge-projected band structure in the z direction for the case in (e). The sparser black lines are projected surface states. In (c) and
(f), the Möbius twist is formed by two π-crossed, 4π-periodic, bulk-decoupled bands of opposite projective translation eigenvalues
(l� ¼ �eikz=2). The color scale indicates the phase profile of l�.
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intuitively understood by the fact that in the same parameter
regime there exists one protected zero mode per corner per
monolayer [19,20]. In this case, the x-z and y-z surface
states are fully gapped, as shown by the sparser black lines
in Fig. 1(f), yet the hinge states in the kz direction are
Möbius twisted, as shown by the two crossing lines in
Fig. 1(f). Because of the projective translation symmetry
½Lz; H3D� ¼ 0, H3D decouples into two quadrupole models
of opposite Lz eigenvalues l� ¼ �eikz=2 in their topologi-
cal phases [Fig. 1(d)]. The pair of quadrupole corner states
evolves into the π-crossed, 4π-periodic, particle-hole-sym-
metric hinge states, as enforced by the projective trans-
lation-time symmetry LzT and the chiral symmetry. Note
that our 3D HOMI, which features a Möbius twist in its
hinge states, is markedly different from the recently
proposed higher-order axion insulator [24], which harbors
Möbius surface states and chiral hinge states.
Figure 2 sketches another 3D model in which the

monolayer is a 2D extension of the 1D SSH chain. In
its phase diagram, there are topological insulator and Dirac
semimetal phases (see Supplemental Material [21]).
Accordingly, the 3D model realizes first-order MI and
Möbius Dirac semimetal phases (see Supplemental
Material [21]). Figures 2(a) and 2(b) display clearly their
bulk band gap and Dirac points, respectively. In 3D, unlike
a nonsymmorphic symmetry that is invariant only at a
special 0- or π-momentum plane, here the projective

translation symmetry is respected everywhere in the
momentum space. Consequently, the surface bands are
enforced to exhibit a unique Möbius line twist instead of a
point twist, as featured in Figs. 2(c) and 2(d).
Acoustic realizations of the 2D and 3D Möbius

insulator.—Our Möbius models can be implemented with
cavity-tube structures in acoustic systems. Physically, the
cavity resonators emulate atomic orbitals, the narrow tubes
introduce hoppings between them [25–28], and the tube
positions can control the hopping signs to achieve the π
flux, as visualized in our acoustic crystals [Figs. 3(a) and
4(a)]. With their structure details in Supplemental Material
[21], we have designed a 2D acoustic MI (t ¼ γx ≈ 68 Hz,
λx ≈ 261 Hz, and on-site energy ≈5689 Hz) and a 3D
acoustic HOMI (t ≈ 50 Hz, γx ¼ γy ≈ 11 Hz, λx ¼ λy≈
157 Hz, and on-site energy ≈5769 Hz). Both experimental
samples are fabricated by 3D printing with a photosensitive
resin material, and the fabrication error is ∼0.1 mm. Next,
we experimentally confirm their projective Möbius band
topology, not only from the twisted dispersions of edge and
hinge states, but also from the intricate phase winding of
their projective translation eigenvalues.
Figure 3(a) shows our experimental sample for the 2D

acoustic MI. It consists of 22 × 22 acoustic resonators in
the x and y directions. On each resonator, two small holes
were perforated for inserting sound source or probe, and
they were sealed when not in use. To measure the bulk band
structure, we placed a pointlike broadband source in the
middle of the sample (magenta circle) and scanned the
acoustic response over the sample. Figure 3(b) presents the
Fourier spectrum (color scale) performed for the exper-
imental sound signals in the time-space domain. It shows
good agreement with the predicted bulk band structure
(black line). To visualize the edge states, the sound source
was relocated to the middle of the top edge [magenta star in
Fig. 3(a)]. Figure 3(c) shows the pressure profile scanned
along a row of cavities away from the top edge [dashed line
in Fig. 3(a)]. It shows that the sound field is strongly
confined to the top edge inside the bulk gap and exponen-
tially decays away from the top edge (as exemplified at
5720 Hz). The edge states can be further visualized via the
spatially resovled acoustic response to local excitations
[26,27], as exemplified at 6000 and 5720 Hz for the bulk
and edge states [Fig. 3(d)], respectively, by using a smaller
sample of 10 × 24 resonators in total (see Supplemental
Material [21]).
Figure 3(e) shows the Fourier spectrum (color scale)

performed for the pressure field measured along the top
edge. The linear band crossing at kz ¼ π=c provides a
direct visualization of the Möbius twist and 4π periodicity
in momentum space. The experimental result agrees well
with the theoretical prediction (black lines), except for a
slight blueshift in frequency (∼22 Hz), which could be
incurred by the fabrication error in our experimental sample
and the uncertainty of sound speed inside the sample.

FIG. 2. 3D first-order Möbius insulator and Möbius Dirac
semimetal from projective symmetry. (a),(b) Bulk band structures
at kz ¼ π exemplified for a 3D MI and a 3D Möbius Dirac
semimetal. Each band is twofold degenerate. (c),(d) The corre-
sponding band structures projected into the ky-kz surface,
featuring Möbius-twisted surface states. In (c), the Möbius twist
has a zero-energy line degeneracy at kz ¼ π traversing the surface
Brillouin zone. In (d), the Möbius twist has a similar line
degeneracy but only between the two projected Dirac points.
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The band broadening in the experimental data is mainly
caused by finite-size effect and unavoidable acoustic
dissipation. Intriguingly, because the two edge states of
opposite projective translation eigenvalues l� have oppo-
site group velocities, they can be distinguished in the left
and right regions of the top edge. Moreover, the phase
information of l� can be extracted from the phase differ-
ence of two neighboring sublattices in a single unit cell
(see Supplemental Material [21]). Figure 3(f) shows our
experimentally measured phase evolution of l� in the two
edge states. Note that the frequencies of color dots
correspond to the amplitude peaks in the Fourier spectrum
[Fig. 3(e)] for those given momenta. Clearly, the measured
eigenvalue texture, as a distinctive experimental manifes-
tation of the Möbius band topology, reproduces well the
theoretical result (color lines) despite the aforementioned
slight blueshift.
Figure 4(a) shows our experimental sample for the 3D

acoustic HOMI. It consists of 6 × 6 × 26 resonators in the
x, y, and z directions, respectively. A pointlike sound

source was positioned in the middle of a hinge along the z
direction, which excited the hinge states propagating along
the �z directions simultaneously. Overall, the hinge mea-
surements here were similar to the edge measurements in
the 2D case. Figure 4(b) presents the measured hinge
spectrum and the extracted phase information of l� for the
two hinge bands. Matching well with the theoretical results,
they together provide clear evidence for two π-crossed,
4π-periodic hinge bands. The higher-order band topology
can be further visualized via the spatially resolved acoustic
response to local excitations [26,27]. In Figs. 4(c)–4(e), we
show the acoustic intensity fields by sweeping over the
sample surfaces for three representative frequencies that are
associated to the bulk state (5512 Hz), gapped surface state
(5584 Hz), and gapless hinge state (5764 Hz). Note that the
gapped surface states appear only at the side surfaces.
Compared with Figs. 4(c)–4(e) shows a strongly hinge-
localized sound field, directly demonstrating the presence
of higher-order hinge states.

(a) (c) (e)

(b) (d) (f)

FIG. 3. Acoustic realization of a 2D Möbius insulator and edge states. (a) Experimental sample. The magenta circle and star label the
positions of the sound source in the bulk and edge measurements, respectively. Inset: the unit-cell geometry of our acoustic crystal,
where the air cavities (white) and narrow tubes (color) mimic the orbitals and hoppings in the tight-binding model, respectively. The
lattice constants are a ¼ c ¼ 75 mm. (b) Experimentally measured (color scale) and theoretically predicted (black line) bulk spectra.
(c) Left: frequency-resolved pressure amplitude scanned along the dashed line in (a), where the two yellow dashed lines indicate the
frequency window predicted for the edge states. Right: the data extracted at 5720 Hz (magenta spheres) plotted in log scale. (d) Intensity
profiles at two selected frequencies respectively for the bulk and edge states, measured for a sample of samller size. (e) Measured (color
scale) and predicted (black line) edge spectra. (f) Measured phase information of l� (color dots) encoding the measured edge bands,
compared with the theoretical results (color lines).
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Discussions and conclusions.—The peculiar Möbius
boundary states were predicted in fractional Josephson
effect [17,29], KHgX (X ¼ As, Sb, Bi) [30], Kondo
insulators (CeXSn with X ¼ Ni, Rh, Ir) [31], and axion
insulators (MnBi2nTe3nþ1) [24]. However, they have been
elusive in experiment to date [32–34]. For the first time, we
provide compelling experimental evidence for the Möbius
edge and hinge states in position, momentum, energy, and
phase domains. The phase winding is a unique result from
the projective translation symmetry. In the future, one can
fabricate and measure the 3D MI and Möbius Dirac
semimetal proposed in Fig. 2, in which the flat Möbius
line twist is another hallmark of the projective translation
symmetry. It would also be exciting to explore other
projective symmetries, such as the projective inversion
symmetry that can switch a spinless system to a spinful one,
and vice versa [18]. Having exemplified the interplay
between the Z2 gauge and translation symmetries, our
findings urge one to establish a complete projective
topological classification based on the extraordinarily rich
interplay between all variety of gauge and crystalline
symmetries, particularly in various artificial systems
[35–42] in which gauge symmetries are abundant [26–
28,43–45].

We thank M. X. for fruitful discussions. This project
is supported by the National Natural Science Foundation
of China (Grants No. 11890701, No. 12004287, and
No. 12104346), the Young Top-Notch Talent for Ten
Thousand Talent Program, the National Postdoctoral
Program for Innovative Talents (Grant No. BX20200258),
and the China Postdoctoral Science Foundation (Grant
No. 2020M680107). F. Z. is supported by the UT Dallas
Research Enhancement Fund. C. Q. conceived the idea.
T. L. developed the theory and did the simulations. J. D. and
Q. Z. designed the experiments and fabricated the samples.
J. D., Q. Z., Y. L., and X. F. performed the experiments.
T. L., F. Z., and C. Q. wrote the manuscript with input
from J. D. and Q. Z. C. Q. and F. Z. supervised the project.
All authors contributed to scientific discussions of the
manuscript.

Note added.—Recently, we became aware of Ref. [46].

*These authors contributed equally.
†To whom correspondence should be addressed.
zhang@utdallas.edu

‡To whom correspondence should be addressed.
cyqiu@whu.edu.cn

[1] J. E. Moore, The birth of topological insulators, Nature
(London) 464, 194 (2010).

[2] M. Z. Hasan and C. L. Kane, Colloquium: Topological
insulators, Rev. Mod. Phys. 82, 3045 (2010).

[3] X.-L. Qi and S.-C. Zhang, Topological insulators and
superconductors, Rev. Mod. Phys. 83, 1057 (2011).

[4] A. Kitaev, Periodic table for topological insulators and
superconductors, AIP Conf. Proc. 1134, 22 (2009).

[5] S. Ryu, A. P. Schnyder, A. Furusaki, and A.W.W. Ludwig,
Topological insulators and superconductors: Tenfold way
and dimensional hierarchy, New J. Phys. 12, 065010 (2010).

[6] L. Fu, Topological Crystalline Insulators, Phys. Rev. Lett.
106, 106802 (2011).

[7] F. Zhang, C. L. Kane, and E. J. Mele, Topological Mirror
Superconductivity, Phys. Rev. Lett. 111, 056403 (2013).

[8] C. K. Chiu, J. C. Teo, A. P. Schnyder, and S. Ryu, Classi-
fication of topological quantum matter with symmetries,
Rev. Mod. Phys. 88, 035005 (2016).

[9] R. J. Slager, A. Mesaros, V. Juričić, and J. Zaanen, The
space group classification of topological band-insulators,
Nat. Phys. 9, 98 (2013).

[10] T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H.
Weng, and C. Fang. Catalogue of topological electronic
materials, Nature (London) 566, 475 (2019).

[11] M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A.
Bernevig, and Z. Wang, A complete catalogue of high-
quality topological materials, Nature (London) 566, 480
(2019).

[12] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Compre-
hensive search for topological materials using symmetry
indicators, Nature (London) 566, 486 (2019).

[13] S. Weinberg, The Quantum Theory of Fields (Cambridge
University Press, Cambridge, England, 1995), Vol. 1.

6.0

5.8

5.6

F
re

qu
en

cy
 (

kH
z)

kz ( /c)
0.0 1.0 2.0

(b)(a)

(c)

0

1
5764 Hz

5584 Hz

5480 Hz

5.5

5.7

5.9

(d) (e)

x

y
z c

a b

FIG. 4. Acoustic realziation of a 3D higher-order Möbius
insulator and hinge states. (a) Experimental sample, where the
inset sketches the unit-cell geometry of our 3D acoustic crystal.
The lattice constants are a ¼ b ¼ 72.6 mm and c ¼ 43.6 mm.
(b) Measured phase information of l� (color dots) encoding the
measured hinge bands, compared with the theoretical results
(color lines). The black lines are projected bulk and surface states.
(c)–(e) Intensity profiles measured at three frequencies for the
bulk, surface, and hinge states, respectively.

PHYSICAL REVIEW LETTERS 128, 116803 (2022)

116803-5

https://doi.org/10.1038/nature08916
https://doi.org/10.1038/nature08916
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1063/1.3149495
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.111.056403
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1038/nphys2513
https://doi.org/10.1038/s41586-019-0944-6
https://doi.org/10.1038/s41586-019-0954-4
https://doi.org/10.1038/s41586-019-0954-4
https://doi.org/10.1038/s41586-019-0937-5


[14] X.-G. Wen, Quantum orders and symmetric spin liquids,
Phys. Rev. B 65, 165113 (2002).

[15] S. A. Yang, H. Pan, and F. Zhang, Dirac and Weyl Super-
conductors in Three Dimensions, Phys. Rev. Lett. 113,
046401 (2014).

[16] Y. Zhao, Y.-X. Huang, and S. A. Yang, Z2-projective
translational symmetry protected topological phases, Phys.
Rev. B 102, 161117 (2020).

[17] F. Zhang and W. Pan, Fractional Josephson effect: A
missing step is a key step, Nat. Mater. 17, 851 (2018).

[18] Y. Zhao, C. Chen, X.-L. Sheng, and S. A. Yang, Switching
Spinless and Spinful Topological Phases with Projective PT
Symmetry, Phys. Rev. Lett. 126, 196402 (2021).

[19] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quan-
tized electric multipole insulators, Science 357, 61 (2017).

[20] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Elec-
tric multipole moments, topological multipole moment
pumping, and chiral hinge states in crystalline insulators,
Phys. Rev. B 96, 245115 (2017).

[21] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.128.116803 for more
numerical and experimental details, which includes
Refs. [22–23].

[22] A. Palyi, Lecture notes: Topological semimetals (2017),
https://physics.bme.hu/sites/physics.bme.hu/files/users/
BMETE11MF34_kov/weyl_semimetals.pdf.

[23] E. Khalaf, W. A. Benalcazar, T. L. Hughes, and R. Queiroz,
Boundary-obstructed topological phases, Phys. Rev.
Research 3, 013239 (2021).

[24] R.-X. Zhang, F. Wu, and S. D. Sarma, Möbius Insulator and
Higher-Order Topology in MnBi2nTe3nþ1, Phys. Rev. Lett.
124, 136407 (2020).

[25] K. H. Matlack, M. Serra-Garcia, A. Palermo, S. D. Huber,
and C. Daraio, Designing perturbative metamaterials from
discrete models, Nat. Mater. 17, 323 (2018).

[26] H. Xue, Y. Ge, H.-X. Sun, Q. Wang, D. Jia, Y.-J. Guan,
S.-Q. Yuan, Y. Chong, and B. Zhang, Observation of an
acoustic octupole topological insulator, Nat. Commun. 11,
2442 (2020).

[27] X. Ni, M. Li, M. Weiner, A. Alù, and A. B. Khanikaev,
Demonstration of a quantized acoustic octupole topological
insulator, Nat. Commun. 11, 2108 (2020).

[28] Y. Qi, C. Qiu, M. Xiao, H. He, M. Ke, and Z. Liu, Acoustic
Realization of Quadrupole Topological Insulators, Phys.
Rev. Lett. 124, 206601 (2020).

[29] F. Zhang and C. L. Kane, Anomalous topological pumps
and fractional Josephson effects, Phys. Rev. B 90,
020501(R) (2014).

[30] Z. Wang, A. Alexandradinata, R. J. Cava, and B. A. Bernevig,
Hourglass fermions, Nature (London) 532, 189 (2016).

[31] P.-Y. Chang, O. Erten, and P. Coleman, Möbius Kondo
insulators, Nat. Phys. 13, 794 (2017).

[32] J. Ma et al., Experimental evidence of hourglass fermion in
the candidate nonsymmorphic topological insulator KHgSb,
Sci. Adv. 3, e1602415 (2017).

[33] A. J. Liang et al., Observation of the topological surface
state in the nonsymmorphic topological insulator KHgSb,
Phys. Rev. B 96, 165143 (2017).

[34] S. Seong, K. Kim, E. Lee, C.-J. Kang, T. Nam, B. I. Min, T.
Yoshino, T. Takabatake, J. D. Denlinger, and J.-S. Kang,
Angle-resolved photoemission spectroscopy study of the
Möbius Kondo insulator candidate CeRhSb, Phys. Rev. B
100, 035121 (2019).

[35] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological
photonics, Nat. Photonics 8, 821 (2014).

[36] T. Ozawa et al., Topological photonics, Rev. Mod. Phys. 91,
015006 (2019).

[37] S. D. Huber, Topological mechanics, Nat. Phys. 12, 621
(2016).

[38] X. Zhang, M. Xiao, Y. Cheng, M.-H. Lu, and J. Christensen,
Topological sound, Commun. Phys. 1, 97 (2018).

[39] G. Ma, M. Xiao, and C. T. Chan, Topological phases in
acoustic and mechanical systems, Nat. Rev. Phys. 1, 281
(2019).

[40] B. Xie, H.-X. Wang, X. Zhang, P. Zhan, J.-H. Jiang, M. Lu,
and Y. Chen, Higher-order band topology, Nat. Rev. Phys. 3,
520 (2021).

[41] N. Goldman, J. C. Budich, and P. Zoller, Topological
quantum matter with ultracold gases in optical lattices,
Nat. Phys. 12, 639 (2016).

[42] N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological
bands for ultracold atoms, Rev. Mod. Phys. 91, 015005
(2019).

[43] M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T.
Larsen, L. G. Villanueva, and S. D. Huber, Observation
of a phononic quadrupole topological insulator, Nature
(London) 555, 342 (2018).

[44] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G.
Bahl, A quantized mircowave quadrupole insulator with
topological protected corner states, Nature (London) 555,
346 (2018).

[45] S. Imhof, C. Berger, F. Bayer, J. Brehm, L.W. Molenkamp,
T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert,
and R. Thomale, Topolectrical circuit realization of topo-
logical corner states, Nat. Phys. 14, 925 (2018).

[46] H. Xue, Z. Wang, Y. X. Huang, Z. Cheng, L. Yu, Y. X. Foo,
Y. X. Zhao, S. A. Yang, and B. Zhang, preceding Letter,
Projectively Enriched Symmetry and Topology in Acoustic
Crystals, Phys. Rev. Lett. 128, 116802 (2022).

PHYSICAL REVIEW LETTERS 128, 116803 (2022)

116803-6

https://doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1103/PhysRevLett.113.046401
https://doi.org/10.1103/PhysRevLett.113.046401
https://doi.org/10.1103/PhysRevB.102.161117
https://doi.org/10.1103/PhysRevB.102.161117
https://doi.org/10.1038/s41563-018-0179-1
https://doi.org/10.1103/PhysRevLett.126.196402
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.116803
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.116803
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.116803
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.116803
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.116803
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.116803
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.116803
https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE11MF34_kov/weyl_semimetals.pdf
https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE11MF34_kov/weyl_semimetals.pdf
https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE11MF34_kov/weyl_semimetals.pdf
https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE11MF34_kov/weyl_semimetals.pdf
https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE11MF34_kov/weyl_semimetals.pdf
https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE11MF34_kov/weyl_semimetals.pdf
https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE11MF34_kov/weyl_semimetals.pdf
https://doi.org/10.1103/PhysRevResearch.3.013239
https://doi.org/10.1103/PhysRevResearch.3.013239
https://doi.org/10.1103/PhysRevLett.124.136407
https://doi.org/10.1103/PhysRevLett.124.136407
https://doi.org/10.1038/s41563-017-0003-3
https://doi.org/10.1038/s41467-020-16350-1
https://doi.org/10.1038/s41467-020-16350-1
https://doi.org/10.1038/s41467-020-15705-y
https://doi.org/10.1103/PhysRevLett.124.206601
https://doi.org/10.1103/PhysRevLett.124.206601
https://doi.org/10.1103/PhysRevB.90.020501
https://doi.org/10.1103/PhysRevB.90.020501
https://doi.org/10.1038/nature17410
https://doi.org/10.1038/nphys4092
https://doi.org/10.1126/sciadv.1602415
https://doi.org/10.1103/PhysRevB.96.165143
https://doi.org/10.1103/PhysRevB.100.035121
https://doi.org/10.1103/PhysRevB.100.035121
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1038/nphys3801
https://doi.org/10.1038/nphys3801
https://doi.org/10.1038/s42005-018-0094-4
https://doi.org/10.1038/s42254-019-0030-x
https://doi.org/10.1038/s42254-019-0030-x
https://doi.org/10.1038/s42254-021-00323-4
https://doi.org/10.1038/s42254-021-00323-4
https://doi.org/10.1038/nphys3803
https://doi.org/10.1103/RevModPhys.91.015005
https://doi.org/10.1103/RevModPhys.91.015005
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1103/PhysRevLett.128.116802

