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Quantum batteries are devices made from quantum states, which store and release energy in a fast
and efficient manner, thus offering numerous possibilities in future technological applications. They offer a
significant charging speedup when compared to classical batteries, due to the possibility of using
entangling charging operations. We show that the maximal speedup that can be achieved is extensive in the
number of cells, thus offering at most quadratic scaling in the charging power over the classically
achievable linear scaling. To reach such a scaling, a global charging protocol, charging all the cells
collectively, needs to be employed. This concludes the quest on the limits of charging power of quantum
batteries and adds to other results in which quantum methods are known to provide at most quadratic
scaling over their classical counterparts.
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Introduction.—In recent years tremendous efforts have
been devoted to developing quantum technologies, which
are now coming to fruition in several fields of practical use.
Among the largest successes is quantum metrology [1],
which led to the detection of gravitational waves [2],
quantum cryptography [3], which finds applications in
communicating sensitive data [4,5], quantum computing,
which promises to revolutionize chemistry [6] as well as to
speed up or solve important problems in optimization,
cybersecurity and data analysis [7], and nanoscale thermo-
dynamic devices, which offer unprecedented precision in
thermometry [8]. At large, society is moving toward
quantum technologies, because they promise to offer faster,
smaller, and more precise devices.
All of these achievements require an efficient way of

storing and using energy, as well as fast charging and
discharging. The necessity of charging and discharging
goes well beyond the quantum world. Examples are electric
vehicles where the charging time is one of the main
bottlenecks in preventing the widespread use of such
technology, or future fusion power plants, in which a large
amount of energy needs to be pumped in a short amount of
time and discharged in an instant to start the reaction. In the
quantum world, nanoscale devices will require nanoscale
batteries, with no energy to spare.
Outstanding successes of quantum technologies prompt

a question whether quantum effects can also improve the
energy storage to satisfy current and future demands. This
leads to the notion of quantum battery, which is a quantum
mechanical system acting as an energy storage, and in
which quantum effects are expected to provide significant
advantages over its classical counterpart (see [9,10] for
reviews). Starting from the work of Alicki and Fannes [11],
the possibility of using quantum effects (like coherence and

entanglement) to increase the performance of a quantum
battery has been heavily studied. These studies address
several figures of merit, such as work extraction [11,12],
energy storage [13–17], charging stability [18–21], avail-
able energy [22–24] (with the notion of ergotropy [25]),
and charging power [26–37], the last being the actual focus
of this Letter.
It has been shown [27] that quantum effects lead to a

speedup in the charging power of a quantum battery. The
source of this quantum speedup lies in the use of entangling
operations, in which the cells are charged collectively as a
whole. Those operations, where the number of cells that
are being entangled together collectively scales with the
system size (i.e., creating multipartite entanglement), are
called global operations. In contrast, classical batteries are
charged in parallel, meaning that each cell is charged
independently of each other. The advantage of this collec-
tive versus parallel charging is measured by the ratio Γ,
called the quantum charging advantage [27]. However, it is
still not known how large the quantum advantage is in
general. To this end, the best known result is [27]

Γ < γ½k2ðm − 1Þ þ k�; ð1Þ

in which γ is a model-dependent constant, k is the maximum
number of cells that are collectively charged, whilem (called
participation number) is the maximum number of parallel
charging operations in which a single cell appears.
In principle, this bound allows for a superextensive

scaling of the quantum advantage, meaning that the
advantage can scale more than linearly with the number
L of cells. For example, consider a charging protocol that
has a finite and fixed value of k but having all-to-all
couplings. In such a case, the participation number of a
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given cell is of order m ¼ ðL−1k−1Þ ≈ ðL − 1Þk−1=ðk − 1Þ!,
leading to a quantum advantage of order Lk−1.
This prompted a race toward finding the best possible

scaling—the authors of [27] found that the scaling is of
order L at most through an extensive numerical search, and
proposed a conjecture that this extensive scaling cannot be
surpassed. The search for scaling advantages continued in
[13,14,28,29,32,38], which also showed at most extensive
scaling, but it was later shown that some of these advan-
tages were not caused by genuine quantum effects [39]. A
genuine, extensive, quantum advantage was found in [33],
in a setup including both global charging operations and
all-to-all couplings. The conjecture still held, but remained
unproven, together with uncertain role as to which all-to-all
interactions play in determining the quantum advantage.
In this Letter, we prove this conjecture, showing that a

quantum battery provides at most extensive advantage over
classical batteries. Furthermore, we show that this scaling is
achievable only via global charging operations, i.e., we show
that all-to-all interactions, and more generally, the partici-
pation number, does not provide any scaling advantage.
We first provide a general bound (Theorem 1), con-

straining the maximum charging power achievable with a
general quantum battery with any general Hamiltonian, not
necessarily realized by L identical cells, thus including also
more general cases described in the literature [28]. The
conjecture is proven as a consequence of this theorem
(Corollary 1), applied to the battery made of identical cells.
Together with examples showing extensive advantage
[26,33], already found and discussed in the literature, this
result concludes the quest for the best possible scaling
which can be obtained by quantum batteries.
Setup.—We consider quantum batteries made out of a

time independent initial Hamiltonian Ĥ, having discrete
spectrum. At time t ¼ 0 a possibly time-dependent driving
Hamiltonian V̂ðtÞ is turned on and the initial state ρ̂0 is
evolved according to the quench

dρ̂t
dt

¼ −i½V̂ðtÞ; ρ̂t�: ð2Þ

The energy stored in the battery, measured by the initial
Hamiltonian, changes from Eð0Þ ¼ trðĤρ̂0Þ to EðtÞ ¼
trðĤρ̂tÞ during time evolution. Charging the battery means
reaching large values of EðtÞ − Eð0Þ.
An important figure of merit is the instantaneous

charging power of the battery. It is defined as the instanta-
neous change in the energy stored per unit of time:

PðtÞ ¼ tr
�
Ĥ
dρ̂t
dt

�
; ð3Þ

where we used that Ĥ is time independent.
Generally, the instantaneous power is bounded in terms

of the commutator between Ĥ and the driving term

jPðtÞj ≤ k½Ĥ; V̂ðtÞ�k ≤ 2kĤkkV̂ðtÞk ð4Þ

through the operator norm [40].
However, the driving is often limited in realistic sit-

uations. For example, in lattice systems, the interaction
couples only nearby sites and therefore V̂ transfers energy
only between not-too-distant energy levels of the initial
Hamiltonian Ĥ. Taking the spectral decomposition of the
initial Hamiltonian to be Ĥ ¼ P

j EjjEjihEjj, where we
assume the energy levels Ej being ordered, we express
the driving Hamiltonian as V̂ ¼ P

N
j;m¼1 VjmjEjihEmj. The

limiting property is formalized as follows: we define ΔE as
the minimum value such that for all j and m,

when jEj − Emj > ΔE; then Vjm ¼ 0: ð5Þ

Thus, it is natural to look for a more precise bound than
Eq. (4), taking this common property into account.
Main result.—In the conditions of Eq. (5), we now show

that a more stringent bound can be derived.
Theorem 1.—For driving that couples energy levels with

at most ΔE energy difference, as expressed by Eq. (5), the
instantaneous charging power is bounded as

jPðtÞj ≤ ΔEkV̂ðtÞ − vminðtÞk=2; ð6Þ

where vminðtÞ is the smallest eigenvalue of V̂ðtÞ, and k k
denotes the operator norm.
Hence, the operator norm of the initial Hamiltonian,

central in inequality (4), is not the relevant figure of merit.
Instead, the crucial quantity is the maximal value of energy
(as measured by Ĥ) that can be transferred by V̂ in a single
time step. While nontrivial to prove, this result is very
intuitive. The charging power is the amount of the energy
stored in the battery in a single time step. Thus, this change
in energy must be bounded by the maximum amount of
energy that the driving term can transfer to the system
during that time.
The fact that the bound is not given by the operator norm

of Ĥ has a far reaching consequence. As outlined in the
Introduction, it has been a matter of active research which
combination of initial and driving Hamiltonians can reach a
charging power scaling with kĤk. Theorem 1 shows that to
reach this scaling one needs to consider driving terms
having nonvanishing matrix elements between the ground
state and the highly excited states of Ĥ. This latter property
defines the so-called global charging operations which
we discuss more extensively later. Another point of this
bound is that it applies to any Hamiltonian Ĥ, even with
interacting cells.
Sketch of the proof.—The full proof of the theorem is

technically involved. Here, we sketch the main idea, while
we refer the reader to the Supplemental Material [41] for
details.
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We express the commutator between Ĥ and V̂ as an
integral of commutators which are more easily and directly
bounded. In particular, we define certain operator functions
ĥðeÞ and v̂ðeÞ, depending on a continuous parameter e and
satisfying

½Ĥ; V̂� ¼
Z

ΔE

e¼0

½ĥðeÞ; v̂ðeÞ�de; ð7Þ

as well as the following properties:

kĥðeÞk ¼ 1

2
; kv̂ðeÞk ¼ kV̂k: ð8Þ

We apply triangle inequality to Eq. (7) to derive bound
k½Ĥ; V̂�k ≤ ΔEkV̂ðtÞk. Since any number λ commutes with
Ĥ, and V̂ 0

λ ¼ V̂ − λ also satisfies Eq. (5), we can make this
bound tighter by minimizing over λ,

k½Ĥ; V̂�k ¼ inf
λ
k½Ĥ; V̂ 0

λ�k ≤ inf
λ
ΔEkV̂ − λk

¼ ΔE
2

kV̂ − vmink: ð9Þ

The theorem then follows from Eq. (4).
Lattice case.—In case of a battery made by cells, each of

them given, for example, by a qubit, Theorem 1 provides a
much more stringent bound than other known bounds [27].
We consider a battery composed of L identical cells,

having initial Hamiltonian

Ĥ ¼
XL
l¼1

ĤðlÞ; ð10Þ

where ĤðlÞ ¼ Î ⊗ � � � ⊗ Î ⊗ Ĥs ⊗ Î ⊗ � � � ⊗ Î and Ĥs is
the single site Hamiltonian at the lth place. We charge this
battery by turning on the driving Hamiltonian,

V̂ðtÞ ¼
X

i∈KðL;kÞ
V̂ iðtÞ; ð11Þ

where, by definition, each term in the summation couples
together at most k cells. Expressed mathematically,

KðL; kÞ ¼ ∪
k

n¼1
CðL; nÞ;

CðL; nÞ ¼ fði1;…; inÞji1 < � � � < in and

ij ∈ f1;…; Lgg; ð12Þ

where CðL; nÞ is a set of all combinations of n sites, and Vi
acts as an identity on the site which does not appear in the
index, i.e., for any local matrix M̂ðlÞ ¼ Î ⊗ � � � ⊗ Î ⊗
M̂ ⊗ Î ⊗ � � � ⊗ Î, where M̂ is at the lth place, if

l ∉ i ¼ ði1;…; inÞ, then ½M̂ðlÞ; V̂ iðtÞ� ¼ 0. The cases with
k ∝ L are called global operations. The corollary follows.
Corollary 1.—For initial and driving Hamiltonians (10)

and (11), the instantaneous charging power is bounded as

jPðtÞj ≤ kkĤs − Es minkkV̂ðtÞ − vminðtÞk=2; ð13Þ

where Esmin is the single cell ground state energy.
The result is proven by showing that the maximum

energy jump ΔE in this case is given by kkĤsk. As shown
in the Supplemental Material [41], the corollary then
follows directly from Theorem 1.
The consequences of the bound in Eq. (13) are remark-

able. In particular, it rules out the possibility of having
extensive quantum charging advantage without global
charging operations.
To show that, we need to discuss each of these terms

separately: as explained above, k is the number of cells
being coupled together by the driving, and thus k ≤ L.
kĤs − Es mink is a number that depends on particulars of a
single cell but does not scale with L. The last term,
kV̂ðtÞ − vminðtÞk, which we call potential (in analogy with
electric circuits), can be in principle made arbitrarily large.
Physically, this would correspond to investing a very large or
infinite energy into the driving. With larger driving energy,
the charging is faster. Thus, to compute the quantum
charging advantage, we need to compare the parallel and
quantum scaling on an equal footing, by assuming that the
energy scale that is invested into the driving is the same in
both cases. We do that by fixing the potential of the quantum
driving to be at most equal to the potential of the parallel

driving, kV̂ − vmink ≤ kV̂k − vkmink. This is the constraint
C0, introduced and argued for in Ref. [27].
Parallel charging is given by k ¼ 1 in driving

Hamiltonian (11), while the initial state is assumed to
be a product state ρ̂ ¼ ρ̂⊗L

s . Thus, in the parallel charging
scenario the driving affects each cell independently. From

this, we easily calculate that both the potential kV̂k −
vkmink ¼ LkV̂k

s − vksmink and the charging power Pk ¼ LPk
s

scale linearly with L. ρ̂s, kV̂k
s − vksmink, and Pk

s denote the
state, potential, and charging power of a single cell,
respectively.
Combining Eq. (13), constraint C0, and the results for

parallel charging, we bound the quantum advantage as

jΓj ¼ jPj
jPkj ≤

kkĤs − EsminkkV̂k
s − vksminkL

2jPk
s jL

¼ γk; ð14Þ

where γ is L and k independent. Thus, the quantum
advantage scales with the maximum number k of cells
that are coupled together by V̂. If this number does not
scale with the lattice size L, then the quantum advantage
cannot scale with L, as extensively foreshadowed in the
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Introduction. The extensive scaling is possible only for
global interactions, k ∝ L. By showing that the only source
of the quantum advantage comes from the global entan-
gling operations, we showed that the advantage comes from
genuine quantum effects. This addresses the discussion of
the role of quantumness posed in relation to the bound on
charging power found in [39].
Finally, we ask what is the maximal scaling of power

with L that a quantum charging protocol can achieve.
Clearly, using Eq. (13), the maximum charging power is
given by the product of k, and by whatever scaling can be
constructed from kV̂ − vmink (for now leaving constraint
C0 behind). It is possible to artificially construct some
driving Hamiltonians that scale superextensively, i.e., with
higher powers of L [28,29]. However, such models are
unphysical [33,39], because they would lead to a free
energy that is superextensive in the thermodynamic limit.
Therefore, for any physical model, considering extensive
energy kV̂ − vmink ∼ L, the maximal charging power scales
at most quadratically P ∼ L2, for global operations k ∝ L.
(Compare with the linear scaling of parallel charging.)
As an illustrative example, we study charging of a

quantum battery by means of a driving Hamiltonian
obtained via a simple generalization of the celebrated
Sachdev-Ye Hamiltonian [42], i.e., a random, two-local,
all-to-all Hamiltonian

V̂ ¼ C
XL
i<j

X
α¼x;y;z

Jαijσ̂
α
i σ̂

α
j ; ð15Þ

where the coupling constants Jαij are randomly extracted
from a normal distribution and the normalization factor C is
chosen such that kV̂ − vmink ¼ 2, to ensure a fair com-
parison between different realizations (instances).
(C ∝ L−3=2, which for the Sachdev-Ye Hamiltonian follows
from the replica formalism [42,43]. We numerically con-
firm this scaling in the Supplemental Material [41].) The
results are shown in Fig. 1(a). We clearly see that the power
is bounded by the degree of k locality and not by the
participation number. As a result, we do not find any
extensive charging advantage for this model as expected.
Interestingly, we observe that both the maximum power as
well as the maximum value of the commutator norm

k½Ĥ; V̂�k

slightly decreases with the system size L. This is a finite
size effect which sensitively reduces by further increasing
the system size. We present an analysis of this phenomenon
in the Supplemental Material [41].
Does global charging always lead to an extensive

quantum advantage?—The presence of a global charging
term in V̂ does not guarantee an extensive charging
advantage.

As an example, consider a battery composed of L qubits
having initial Hamiltonian Ĥ ¼ P

L
l¼1 hσ̂

z
l and charged via

the following driving

V̂ ¼ V
bL=2c þ 1

�X
l¼odd

σ̂xl ⊗ σ̂xlþ1 þ ⊗
L

l¼1
σ̂xl

�
; ð16Þ

with V being a constant. From Theorem 1, we obtain
P ≤ 2LhkV̂k ¼ 2LhV (using kĤs − Es mink ¼ 2h), due to
the second term representing a global operation, which
couples all of the sites at the same time. Presence of this
global charging term suggests possibility of an extensive
charging advantage.

(a)

(b)

FIG. 1. (a) Maximum power Pmax and maximum operator norm
of the commutator k½Ĥ; V̂�k as a function of L (maximized over
all time and 500 realizations of disorder for each value of L),
starting from the ground state of initial Hamiltonian Ĥ ¼P

L
l¼1 hσ̂

z
l and charged by driving Hamiltonian as in Eq. (15).

For this example, we fixed h ¼ 1. We observe a slight decrease in
Pmax and k½Ĥ; V̂�k with growing L, which is a result of increasing
dimensionality of the system, resulting in the lower chance of the
of the initial state to be optimal. While keeping the number of
realizations of different driving fixed at 500, which means that
upper the bound is more difficult to reach. (b) The same as (a) but
for a driving given by Eq. (16). For this example, we additionally
fixed V ¼ 1.
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However, in this case an extensive quantum advantage
is not reached. This is because the nearest-neighbor termsP

l¼odd σ̂
x
l ⊗ σ̂xlþ1, which provide nonextensive advantage,

dominate the interaction. They contribute V=ð1þ 1=bL=2cÞ
while the global term contributes only V=ðbL=2c þ 1Þ to the
total norm kV̂k. This subextensive scaling is confirmed by
the following, alternative, inequality, which is derived in the
Supplemental Material [41],

jPðtÞj ≤
XL
k¼1

kkV̂kkkĤs − Es mink; ð17Þ

where V̂k is the k-local part of V̂. From inequality (17) we
obtain P ≤ 4kV̂2khþ 2LkV̂Lkh ¼ f½4=ð1þ 1=bL=2cÞ� þ
½2L=ðbL=2c þ 1Þ�gVh ≈ 8Vh for the present example,
which indeed confirms that the power does not display an
extensive advantage. As a further confirmation, we explicitly
computed the maximum charging power for this driving
Hamiltonian (16), reported in Fig. 1(b). We clearly see that
the charging power stays well-below the threshold given
by Eq. (17).
Discussion and conclusions.—We found a bound on the

maximum charging power which can be achieved by
charging a quantum battery via an external quench protocol.
This bound shows that the maximum charging power is

not dependent on the operator norm of the battery
Hamiltonian, by which the amount of charged energy is
measured. Instead, it is governed by the maximum energy
difference ΔE between two eigenstates of the battery
Hamiltonian for which the driving Hamiltonian has a
nonvanishing matrix element. In other words, the charging
power is limited by the amount of energy that the driving
Hamiltonian can add into the battery in a single step, a
result which a posteriori seems very natural. This bound
can be applied to a general quantum battery, described by
any Hamiltonian, even those of interacting quantum cells.
When applied to quantum batteries made of L identical

cells, this bound provides a limit on how fast they can be
charged as compared to classical batteries. The maximum
speed by which a quantum battery can be charged depends
only on the number k of cells interacting together in a single
term. It does not depend on the participation number,
which is the number of independent terms in the driving
Hamiltonian in which a single cell appears. For example,
pairwise interactions can provide a quantum speedup by at
most a factor of 2, even in the case of all-to-all couplings,
where every cell is connected to every other cell. For a
speedup of a factor of k, one needs to consider k-cell
interactions, while the maximal speedup of L is achieved
for L-particle interactions. While charging power of
classical batteries scales linearly with the number of cells
(∝ L), quantum batteries provide at most quadratic scaling
in charging power (∝ L2). This quadratic scaling cannot
be reached without global operations. However, the mere

presence of global charging operations does not always
guarantee an extensive charging advantage, as we demon-
strated on an explicit example.
This Letter adds to other results, in which quantum

systems provide at most quadratic improvement over the
known classical method, like the Heisenberg limit in
sensitivity scaling in quantum metrology over the classi-
cally achievable shot-noise limit [1,44,45], and Grover’s
search algorithm [46], which is known to be asymptotically
optimal [47].
The bound specifies, for a given battery Hamiltonian and

for a given driving, the maximum instantaneous charging
power achievable in that particular setup. It does not give
any information about the quantum state for which such a
power can be achieved. This constitutes an interesting
question for future research.
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Goold, S. Vinjanampathy, and K. Modi, Phys. Rev. Lett.
118, 150601 (2017).

[28] T. P. Le, J. Levinsen, K. Modi, M. M. Parish, and F. A.
Pollock, Phys. Rev. A 97, 022106 (2018).

[29] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and
M. Polini, Phys. Rev. Lett. 120, 117702 (2018).

[30] G. M. Andolina, M. Keck, A. Mari, V. Giovannetti, and M.
Polini, Phys. Rev. B 99, 205437 (2019).

[31] A. Crescente, M. Carrega, M. Sassetti, and D. Ferraro, Phys.
Rev. B 102, 245407 (2020).

[32] S. Ghosh, T. Chanda, and A. Sen(De), Phys. Rev. A 101,
032115 (2020).

[33] D. Rossini, G. M. Andolina, D. Rosa, M. Carrega, and M.
Polini, Phys. Rev. Lett. 125, 236402 (2020).

[34] S. Zakavati, F. T. Tabesh, and S. Salimi, Phys. Rev. E 104,
054117 (2021).

[35] S. Ghosh, T. Chanda, S. Mal, and A. S. De, Phys. Rev. A
104, 032207 (2021).

[36] S. Seah, M. Perarnau-Llobet, G. Haack, N. Brunner, and S.
Nimmrichter, Phys. Rev. Lett. 127, 100601 (2021).

[37] L. P. García-Pintos, A. Hamma, and A. del Campo, Phys.
Rev. Lett. 125, 040601 (2020).

[38] X. Zhang and M. Blaauboer, arXiv:1812.10139.
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