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The quantum Hall effect occurring in two-dimensional electron gases was first explained by Laughlin,
who developed a thought experiment that laid the groundwork for our understanding of topological
quantum matter. His proposal is based on a quantum Hall cylinder periodically driven by an axial magnetic
field, resulting in the quantized motion of electrons. We realize this milestone experiment with an ultracold
gas of dysprosium atoms, the cyclic dimension being encoded in the electronic spin and the axial field
controlled by the phases of laser-induced spin-orbit couplings. Our experiment provides a straightforward
manifestation of the nontrivial topology of quantum Hall insulators, and could be generalized to strongly
correlated topological systems.

DOI: 10.1103/PhysRevLett.128.173202

The quantization of Hall conductance observed in two-
dimensional electronic systems subjected to a perpendi-
cular magnetic field [1] is intimately linked to the nontrivial
topology of Bloch bands [2] and the occurrence of chiral
edge modes protected from backscattering [3]. The first
step in its understanding was provided by Laughlin, who
gave an elegant argument by considering a Hall system in a
cylindrical geometry (Fig. 1) [4]. Besides the radial
magnetic field B⊥ yielding the Hall effect, this geometry
authorizes an axial field Bk, which does not pierce the
surface but threads the cylinder with a flux Φk. Varying
the fluxΦk controls a quantized electronic motion along the
tube, which is directly linked to the underlying band
topology. Such quantization of transport was later gener-
alized by Thouless to any physical system subjected to a
slow periodic deformation [5], as implemented in electronic
quantum dots [6,7], photonic waveguides [8], and ultracold
atomic gases [9,10].
So far, the topology of magnetic Bloch bands has been

revealed in planar systems only, by measuring the quan-
tization of transverse response [1,11–13] or observing
chiral ballistic edge modes [14–16]. The realization of
Laughlin’s pump experiment requires engineering periodic
boundary conditions, which is challenging when using
genuine spatial dimensions. The concept of a synthetic
dimension encoded in an internal degree of freedom
provides an alternative method for the generation of gauge
fields [17]. Synthetic dimensions were first implemented
with open boundary conditions, leading to the observation
of chiral edge modes [18,19]. More recently, synthetic Hall
cylinders were engineered using several spin states coupled
in a cyclic manner [20–22]. Nevertheless, the realization of
Laughlin’s topological charge pump was not realized yet,
due to the absence of control over an axial magnetic
field Bk.

In this Letter, we use an ultracold gas of 162Dy atoms to
engineer a Hall cylinder whose azimuthal coordinate is
encoded in the electronic spin J ¼ 8 [23]. We manipulate
the spin using coherent optical transitions, such that a triplet
of internal states coupled in a cyclic manner emerges at low
energy, leading to an effective cylindrical geometry [24].
The exchange of momentum between light and atoms leads
to a spin-orbit coupling that mimics a radial magnetic field
B⊥ [25]. The phases of the laser electric fields also control
an effective axial field Bk, which is the crucial ingredient to
implement Laughlin’s thought experiment and reveal the
underlying topology. The topological character of the

FIG. 1. Laughlin’s thought experiment. Scheme of a two-
dimensional electronic system in a cylindrical geometry, with
a radial magnetic field B⊥ producing a quantum Hall effect. The
orange area, pierced by one magnetic flux quantum Φ0, defines
the length lmag of the magnetic unit cell—each cell being filled
with one electron in a quantum Hall insulator. Laughlin’s thought
experiment consists of performing an adiabatic cycle by thread-
ing one flux quantum ΔΦk ¼ Φ0 through the cylinder. The cycle
shifts electron occupations by one unit cell, such that a single
electron is pumped from one edge to the other, or equivalently the
center-of-mass position is displaced by lmag.

PHYSICAL REVIEW LETTERS 128, 173202 (2022)
Editors' Suggestion Featured in Physics

0031-9007=22=128(17)=173202(5) 173202-1 © 2022 American Physical Society

https://orcid.org/0000-0002-1933-2094
https://orcid.org/0000-0001-6059-622X
https://orcid.org/0000-0002-4550-040X
https://orcid.org/0000-0003-3877-8478
https://orcid.org/0000-0002-3931-9436
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.173202&domain=pdf&date_stamp=2022-04-25
https://doi.org/10.1103/PhysRevLett.128.173202
https://doi.org/10.1103/PhysRevLett.128.173202
https://doi.org/10.1103/PhysRevLett.128.173202
https://doi.org/10.1103/PhysRevLett.128.173202


ground Bloch band manifests as well in a complementary
pump experiment driven by Bloch oscillations.
In our experimental protocol, we apply a magnetic field

in order to lift the degeneracy between the magnetic
sublevels m (with −J ≤ m ≤ J and integer m). Spin
transitions of first and second order, i.e., Δm ¼ �1 and
�2, are induced by resonant two-photon optical transitions,
using a pair of laser beams counterpropagating along x
[Fig. 2(a)] [26]. The configuration of laser frequencies is
chosen such that the atoms undergo a momentum kick
−2ℏk upon either resonant process m → mþ 1 or
m → m − 2, shown in Fig. 2(b). Here, k ¼ 2π=λ is the
photon momentum for the laser wavelength λ ¼ 626.1 nm.
The resulting spin-orbit coupling breaks continuous trans-
lation symmetry, but conserves the quasimomentum
q ¼ Mvx=ℏþ 2kmðmod 6kÞ, defined over the magnetic
Brillouin zone −3k ≤ q < 3k, where M and vx are the
atomic mass and velocity. The atom dynamics is described
by the Hamiltonian

H ¼ 1

2
Mv2x þ V; ð1Þ

V¼−T ye−2ikxþH.c.; T y¼ taeiφa
Jþ
J
þ tbeiφb

J2−
J2

; ð2Þ

where Jþ and J− are the spin ladder operators, and ta;tb >0
are the strengths of the first- and second-order transitions.

The phase difference φa − φb can be gauged away using a
suitable spin rotation, such that we retain hereafter a single
phase φ≡ φa ¼ φb.
The combination of the two types of transitions induces

nontrivial 3-cycles m→mþ1→mþ2→m [Fig. 2(b)],
with chiral dynamics in the cyclic variable y ¼
mðmod 3Þ—each step increasing y by one unit. As
explained in a previous theoretical work [24] and in the
Supplemental Material [26], this dynamics leads to the
emergence at low energy of a closed subsystem of
dimension 3, spanned by three spin states jyi, with
y ¼ 0, 1, 2 and where jyi expands on projection states
jmi with m ¼ yðmod 3Þ only. The jyi states are obtained
by linear combinations of three coherent spin states
oriented along equatorial directions of azimuthal angles
ϕ ¼ φþ f0; 2π=3; 4π=3g. Hence, they only involve mag-
netic projections m around 0, with a rms width
Δm ¼ ffiffiffiffiffiffiffiffi

J=2
p ¼ 2. The jyi states will be interpreted in

the following as position eigenstates along a cyclic syn-
thetic dimension of length Y ¼ 3. The operator T y

involved in the spin coupling [Eq. (2)] then acts as a
translation T yjyi ¼ tjyþ 1i, with a hopping amplitude
t ¼ ta þ tb. The low-energy spin dynamics is described by
the effective potential

Veff ¼ −t
X

2

y¼0

ðeiðφ−2kxÞjyþ 1ihyj þ hcÞ: ð3Þ

Together with the kinetic energy 1
2
Mv2x, it describes the

motion of a particle on a cylinder discretized along its
circumference [see Fig. 2(c)]. The complex phase 2kx
mimics the Aharonov-Bohm phase associated with a radial
magnetic field B⊥ ¼ 2ℏk (assuming a particle charge
q ¼ −1). It defines a magnetic length lmag ¼ λ=6, such
that the magnetic flux Φ⊥ ¼ lmagYB⊥ through a portion of
cylinder of length lmag equals the flux quantum
Φ0 ¼ h=jqj.
Experimentally, we use a gas of about 4 × 104 atoms,

initially prepared at a temperature T ¼ 0.54ð3Þ μK, such
that the thermal momentum width σq ≃ 1.3k is much
smaller than the Brillouin zone extent 6k, and interaction
effects can be neglected on the time scale of our experi-
ments. The atoms are adiabatically loaded in the ground
Bloch band with ta ¼ 11.5ð3ÞEr and tb ¼ 7.1ð2ÞEr, by
ramping the light coupling parameters. Here, Er ¼
ℏ2k2=ð2MÞ is the single-photon recoil energy. The mean
quasimomentum hqi is controlled by applying a weak force
Fx after the loading (see the Supplemental Material [26]).
We simultaneously probe the distribution of velocity vx
and spin projection m. For this, we abruptly switch off the
light couplings and ramp up a magnetic field gradient that
spatially separates the different magnetic sublevels along z.
The velocity distribution is obtained from the density

(a) (c)

(b) (d)

FIG. 2. Emerging quantum Hall cylinder. (a) Sketch of the laser
configuration involving two beams counterpropagating along x
and sent on a thermal sample of dysprosium atoms—one beam
having two frequency components. (b) Scheme of the two-photon
optical transitions resonantly driving first- and second-order spin
transitions, labeled a and b, respectively. (c) Representation of a
nontrivial 3-cycle between magnetic sublevels induced by the
light couplings. (d) Scheme of the Hall cylinder dynamics
emerging at low energy, involving three spin states jyi (with
y ¼ 0, 1, and 2). The hopping amplitudes have a complex phase
φ − 2kx, where 2ℏk plays the role of a radial magnetic field B⊥
and φ is linked to an axial field Bk. The orange area, of length
lmag ¼ λ=6 is threaded by one unit of magnetic flux quantumΦ0.

PHYSICAL REVIEW LETTERS 128, 173202 (2022)

173202-2



profile along x measured after a 2.3 ms expansion. A typical
spin-resolved velocity distribution is shown in Fig. 3(a).
The velocity distribution, plotted in Fig. 3(b) as a

function of q, exhibits a period 2k, similar to the case of
a simple λ=2-lattice. The mean velocity hvxi, shown as a red
line, remains close to zero. Since it is linked to the slope of
the ground-band energy ∂qE0ðqÞ ¼ ℏhvxi, this shows that
the band is quasiflat. In fact, the band’s flatness is protected
from pertubations, such as external magnetic field fluctua-
tions, by the zero net magnetization of the jyi spin states—a
similar effect has been used in another implementation of a
Hall cylinder using dynamical decoupling techniques [22].
The probabilities Πm of projection on each sublevel m

reveal a longer periodicity 6k [Fig. 3(c)], corresponding to
the full extent of the magnetic Brillouin zone. It exper-
imentally confirms the spatial separation of magnetic
orbitals lmag ¼ 2π=ð6kÞ ¼ λ=6 introduced above. The
Πm measurements also give access to the probabilities
Py of projection on the synthetic coordinate y, by summing
the Πm’s withm ¼ yðmod 3Þ [Fig. 3(d)]. The q variation of
these distributions reveals a chirality typical of the Hall
effect: when increasing the momentum by 2k, the Py

distributions cycle along the synthetic dimension in a
directional manner, as Py → Pyþ1 [30,31]. We stress that
such a drift does not occur on the mean spin projection hmi,
which remains close to zero [red line in Fig. 3(c)].
The adiabatic y drift occurring during Bloch oscillations

provides a first insight into the topological character of the
lowest energy band—similar to the quantized flow of
Wannier function charge centers in Chern insulators
[32]. To quantify this drift, we cannot rely on the mean
y position, which is ill defined for a cyclic dimension [33].
Instead, it is reconstructed by integrating the anomalous
velocity hvyi≡ ∂φH=ℏ induced by the force Fx driving the
Bloch oscillation. For this purpose, we conduct a separate
experiment, in which we suddenly switch off the force Fx,

such that the center of mass undergoes a cyclotron
oscillation, with the x and y velocities oscillating in
quadrature. More precisely, the rate of change of the x
velocity gives access to the y velocity, via the exact relation

∂thvxi ¼
i
ℏ
½H; vx� ¼ −

2ℏk
M

hvyi:

Hence, the velocity hvyi induced by the force Fx is given by
the initial slope of hvxi [Fig. 4(b)].
The center-of-mass drift hΔyi, obtained upon integration

of hvyi is shown in Fig. 4(a). We find that it varies linearly
with the quasimomentum variationΔq [Fig. 4(a)], such that
the drift per Bloch oscillation cycle reads

hΔyi
Y

¼ 0.97ð5Þ; ð4Þ

consistent with a unit winding around the cylinder of
circumference Y [26]. The rotation along y occurring over a
Bloch oscillation cycle is thus quantized, providing a first
manifestation of the nontrivial band topology.
We now characterize the global band topology by

implementing Laughlin’s charge pump experiment, and
extend the protocol to reveal the local geometrical proper-
ties. To simulate the axial magnetic field used to drive the
pump, we interpret the complex phase φ involved in the y
hoppings [see Eq. (3)] as the Peierls phase associated with
the field Bk threading the cylinder with a flux

Φk ¼
3φ

2π
Φ0: ð5Þ

We varyΦk by adjusting the phase difference φ between the
laser electric fields involved in the spin transitions using
acousto-optic modulators.

(a) (b) (c) (d)

FIG. 3. Ground band characterization. (a) Spin-resolved velocity distribution measured for a gas of mean quasimomentum hqi ≃ 2k.
(b) Distribution of discrete velocity components vx ¼ ℏðqþ 2kpÞ=M (with integer p) for states of quasimomentum q. The red line
shows the mean velocity hvxi. (c) Spin projection probabilities Πm measured as a function of q. The red line stands for the mean spin
projection hmi. (d) ProbabilitiesPy of projection on y ¼ mðmod 3Þ. The blue circles, orange squares, and green diamonds correspond to
y ¼ 0, 1, and 2, respectively. Statistical error bars, computed from a bootstrap random sampling analysis, are smaller than the symbols.
The lines are calculated from the expected band structure.
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We drive the pump by slowly ramping the phase φ, and
measure the induced shift of the center of mass along the
real dimension x. The experiment is performed for various
values of the quasimomentum hqi uniformly spanning the
magnetic Brillouin zone. The q-averaged drift, shown in
Fig. 4(c), is consistent with a linear variation

hΔxi
lmag

¼ C
Φk
Φ0

; C ¼ 1.00ð4Þ;

in agreement with the expected quantization of transport by
the Chern number C ¼ 1. The pump adiabaticity is checked
by repeating the experiment for various speeds of the flux
ramp, and measuring identical responses for slow enough
ramps [26].
Our experiments also give access to the anomalous drift

of individual momentum states Δx ¼ ΩðqÞφ, proportional
to the Berry curvature ΩðqÞ that quantifies the local

geometrical properties of quantum states [34]. As shown
in Fig. 4(d), the measured Berry curvature is flat within
error bars, consistent with theory, which predicts ΩðqÞ ¼
1=ð2kÞwith negligible q variation. The flatness of the Berry
curvature is a consequence of the continuous translation
symmetry along x, making our system similar to continu-
ous two-dimensional systems with flat Landau levels. In
contrast, discrete lattice systems, such as Hofsdtater and
Haldane models [35,36], or previous implementations of
synthetic Hall cylinders [20–22], exhibit dispersive bands
with inhomogeneous Berry curvatures.
We have shown that implementing a quantum Hall

cylinder gives direct access to the underlying topology
of Bloch bands. Our realization of Laughlin’s pump
protocol could be generalized to interacting atomic sys-
tems, which are expected to form strongly correlated
topological states of matter at low temperature. In particu-
lar, at fractional fillings, one expects the occurrence of
charge density waves as one-dimensional precursors of
two-dimensional fractional quantum Hall states [37]. The
pumped charge would then be quantized to a rational value,
revealing the charge fractionalization of elementary exci-
tations [38].
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