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We present a rigorous approach, based on the concept of continuous thermomajorization, to
algorithmically characterize the full set of energy occupations of a quantum system accessible from a
given initial state through weak interactions with a heat bath. The algorithm can be deployed to solve
complex optimization problems in out-of-equilibrium setups and it returns explicit elementary control
sequences realizing optimal transformations. We illustrate this by finding optimal protocols in the context
of cooling, work extraction, and catalysis. The same tools also allow one to quantitatively assess the role
played by memory effects in the performance of thermodynamic protocols. We obtained exhaustive
solutions on a laptop machine for systems with dimension d ≤ 7, but with heuristic methods one could
access much higher d.
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Introduction.—Thermalization is a ubiquitous process
across quantum sciences. A control over interactions
between a quantum system and its thermal environment
is pivotal for applications ranging from quantum computing
to thermodynamics and, quite broadly, for demonstrating
and harnessing quantum effects in a variety of experimental
platforms. Algorithmic cooling protocols initializing pure
ancilla states [1,2], quantum heat engines [3–5], fridges and
heat pumps [6–8], dissipative generation of quantum
entanglement [9]—these are but a few examples of tasks
involving thermalization stages. These all require the
identification of optimal thermalization schedules maxi-
mizing corresponding objective functions (ground state
population, efficiency, cooling power, entanglement, etc.).
Performing such optimizations in full generality is

typically hopeless. In fact, thermalizations are routinely
described by quantum Markovian master equations [10],
and the problem of characterizing all dynamics that can
result from the integration of such a class of differential
equations is extremely challenging even classically, where
it is known as the embeddability problem [11,12]. Despite
having been studied for decades in the mathematics
literature, general solutions are not known beyond the
simplest cases of dimension d ¼ 2 and d ¼ 3 [13–16].
Here, we start from the observation that the following

properties hold in wide generality across standard thermal-
ization models used in atomic, molecular and optical
physics, quantum thermodynamics, and quantum comput-
ing [17–20]: (P1) The evolution of the system’s quantum
state is described by a Markovian master equation. (P2)
The thermal state is a fixed point of the evolution.
(P3) Evolutions of the energy occupations (“populations”)

and that of energetic quantum superpositions (“coher-
ences”) decouple. There are numerous examples of phe-
nomena described by equations satisfying the above
assumptions: thermalization strokes in thermal machines
[21,22], weak thermal contact of a quantum system with a
large environment [10,23], an atomic degree of freedom
interacting weakly with a thermal radiation field [17],
depolarization noise in a quantum computer and strong
coupling scenarios via reaction coordinates [24]. For
brevity, we will refer to any such dynamical thermalization
model as a Markovian thermal process or an MTP.
The questions we address in this work are the following:

(Q1) What are the most general constraints characterizing
the evolution of energy occupations (populations) under an
MTP? (Q2) Given an initial out-of-equilibrium population,
can we construct the set of all populations achievable from
it under arbitrary MTP? (Q3) If a transformation from an
initial to a final population is possible under MTPs, can we
construct an explicit control sequence realizing it? In what
follows we employ the mathematical framework developed
in the accompanying paper [25] to provide answers to all
these questions. It turns out that (Q1) corresponds to a
broad generalization of the well-known entropy production
inequalities [26]. Concerning (Q2), we answer the question
in the affirmative by providing an explicit verification
algorithm and offering its Mathematica implementation
[27]. Here, we shall illustrate how this algorithm can be
used to solve optimization problems involving cooling,
work extraction, and catalysis. We also report on a recent
work which used our results to show that non-Markovianity
boosts the efficiency of thermal bio-molecular switches
[28]. Finally, in answering (Q3), we pave the way to the
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idea of algorithmically generated thermodynamic proto-
cols, as we showcase by using our code to generate the
optimal cooling protocol recently introduced in Ref. [29].
These applications build up encouraging evidence that the
framework is suitable to perform model-independent opti-
mizations, as well as to algorithmically construct new
thermodynamic schemes in regimes where a complete
analysis is unattainable by alternative methods.
Motivating example.—Before we go into the details of

the general framework, we illustrate the idea within an
experimentally relevant setting. Consider heat-bath algo-
rithmic cooling (HBAC) protocols [2,30–33], whose aim is
to achieve the largest possible cooling of a target system by
means of protocols involving two main steps. First, a
unitary interaction can be performed that involves the target
system and some thermal ancilla qubits. Second, there is an
interaction between systemþ ancillas and a thermal envi-
ronment. The two steps are repeated several times.
Experimental realizations have been demonstrated in the

context of (liquid and solid) state NMR, ion traps, and
quantum optical setups, among others [2]. In the well-
known PPA protocol [1], the interaction with the environ-
ment simply resets the ancilla qubits to a thermal state. For
a long time, this was the best known scheme. More
recently, the state-reset-Γ (SRΓ) protocol [29] was intro-
duced. This is based on the nuclear Overhauser effect, and
performs a reset of the submanifold fj00…0i, j11…1ig of
the energy levels of systemþ ancillas, hence involving
collective interactions which lead to better cooling. Note
that in both protocols the interaction with the environment
is described by an MTP.
We ask is the SRΓ optimal, or could even better cooling

be achieved with similar level of control by tweaking the
thermalization dynamics? Our framework algorithmically
returns the SRΓ protocol as the best available algorithmic
cooling protocol on a qubit target system and a qubit
thermal ancilla, where the optimization is carried out over
all MTPs [34]. This is not only a previously unknown
optimality result, but it also showcases how one can move
from guesswork to optimization in devising cooling
protocols.
Setting.—Formalizing the discussion in the introduction,

an MTP is any dynamics generated by a Markovian master
equation [due to (P1)],

dρðtÞ
dt

¼ H½ρðtÞ� þ Lt½ρðtÞ�; ð1Þ

where Hð·Þ ¼ −i½H; ρ� is the generator of a closed,
reversible quantum dynamics, withH being the (potentially
dressed) Hamiltonian of the system, and Lt being a
Lindbladian generating an open, irreversible quantum
dynamics [10,39]. Moreover, due to (P2), the Gibbs
thermal state γ ¼ e−βH=Trðe−βHÞ is the stationary solution,
Ltγ ¼ 0. Because of (P3), Lt commutes with H at all

times t. Crucially, typical microscopic derivations employing
the weak coupling limit [17–19] lead to a master equation
with this general form. For example, Davies maps [23,40]
describing the thermalization with a large bath in the weak
coupling limit are of this form, with Lt independent of t.
Another example is given by each stroke of a two-stroke
engine cycle in the weak coupling limit, since the time
dependence of H disappears in interaction picture [21].
Hence, the class of equations specified by Eq. (1) emerges in
many situations after the relevant approximations.
What is more, in the accompanying paper [25], we show

that every transformation achievable under arbitrary MTP
can be also achieved within a straightforward physi-
cal setup:
Theorem 1.—Any transformation achievable by an MTP

can be realized by a sequence of elementary thermal-
izations, each involving only 2 energy levels of the system.
Elementary thermalizations between two levels ði; jÞ are

simply described by a standard reset master equation:

dpiðtÞ
dt

¼ 1

τ

�
γi

γi þ γj
½piðtÞ þ pjðtÞ� − piðtÞ

�
; ð2Þ

and an analogous one exchanging i and j. Here and in
what follows, pðtÞ is a vector of populations with
piðtÞ ¼ hEijρðtÞjEii, where jEii is the eigenstate of H
corresponding to energy Ei (for simplicity we consider a
nondegenerate H), while γ is a vector of thermal popula-
tions. Elementary thermalizations describe an exponential
relaxation of energy levels ði; jÞ to a thermal state. For
example, one may have to first thermalize levels 1 and 3 for
some time, then 2 and 5, etc.
Such elementary thermalizations arise naturally from the

weak interaction of a two-level system with a large bath
[23,40] and collision models [41]. In practice, they are
often used as building blocks for more complex protocols
[42], in the context of work extraction [43] and slow driving
[44]. Theorem 1 states that elementary thermalizations are a
universal set of controls for MTP (in contrast to the non-
Markovian regime, where it is not the case [45]).
The ability to selectively couple certain energy levels to

the bath (ideally switching instantaneously from one to the
other) is a commonplace assumption in the study of discrete
engines, when one can couple and decouple submanifolds
of the system’s energy spectrum [46] with baths at different
temperatures [21,22]. Note, however, that two-level ther-
malizations on multiqubit systems require highly nonlocal
interactions and hence may be challenging to implement.
Also, we highlight that generally there will be infinitely
many other protocols connecting the same two states. As
we shall see, it is convenient to focus on elementary
thermalizations because the necessary controls can be
algorithmically constructed. In any case, we study therma-
lization independently of whether and how this stage is
embedded in a more complex protocol.
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Generalized entropy production inequalities (GEP).—In
the accompanying paper [25], we derive the most general
set of constrains that need to be satisfied by populations
pðtÞ independently of the details of the MTP generating
the evolution. These conditions subsume (and greatly
strengthen) the standard positive entropy production
inequality

dΣðtÞ
dt

¼ dSðtÞ
dt

− βJðtÞ ≥ 0; ð3Þ

where SðtÞ ≔ −Tr½ρðtÞ log ρðtÞ� is the von Neumann
entropy and J ≔ Tr½HdρðtÞ=dt� is the heat current flowing
to the system. Specifically, for any well-behaved convex
function h∶R → R, the h divergence defined by

ΣhðtÞ ¼ −
Xd
i¼1

γih

�
piðtÞ
γi

�
; ð4Þ

must be monotonically nondecreasing, dΣhðtÞ=dt ≥ 0. For
each choice of h, the above qualifies as a valid GEP
inequality.
Choosing hðxÞ ¼ x logðxÞ, one obtains dΣdðtÞ=dt ¼

dSdðtÞ=dt − βJðtÞ ≥ 0, where SdðtÞ¼−
P

i piðtÞ logpiðtÞ
is often referred to as the diagonal entropy [47]. This
recovers a result recently appearing in Ref. [48], and can be
used to derive the standard entropy production inequality in
Eq. (3) [34]. Hence, the GEP framework implies the
usual entropy production relation. Choosing hðxÞ ¼
sgnðαÞxα=ðα − 1Þ for α ∈ R, one obtains dΣαðtÞ=dt ≥ 0,
where ΣαðtÞ ¼ −SαðpðtÞkγÞ is the relative Rényi entropy.
This recovers the “second laws” of Ref. [49] in a more
stringent form. In contrast to the end-point conditions of
Ref. [49], our constraints prescribe that all the Σα must be
constantly nondecreasing along the dynamical trajectory
pðtÞ. When γ is a uniform distribution (infinite temperature
limit) the above conditions reduce to the nondecreasing of
all Rényi entropies [50]. Another relevant class of GEP
inequalities can be found taking hqðxÞ ¼ sgnðqÞð1 − xqÞ=
ð1 − qÞ, giving dΣT

qðtÞ=dt ≥ 0, with ΣT
qðtÞ ¼ −STqðpðtÞkγÞ

and STqðpkγÞ ≔ sgnðqÞðPi p
q
i γ

1−q
i − 1Þ=ðq − 1Þ being the

Tsallis relative entropy. The Tsallis entropies, well-known
in nonextensive statistical mechanics and information
theory [51–53], are recovered in the infinite temperature
limit. This extends to arbitrary temperatures the results of
Ref. [54]. Taking hðxÞ ¼ − log x we get −dVðtÞ=dt ≥ 0,
with VðtÞ ¼ −SðγkpðtÞÞ the “vacancy,” found in Ref. [55]
to be the central constraint at very low temperatures.
GEP inequalities encompass a wealth of disparate results

as part of a unified framework. At the same time, a natural
question arises: Is there a family of entropic conditions that
implies all others? The answer is affirmative and can be
interpreted as a sort of exhaustive H theorem (for the proof
see the accompanying paper [25]).

Theorem 2.—All GEP are implied by the nondecrea-
sing of

ΣaðtÞ ≔ −
Xd
i¼1

����piðtÞ − a
γi
γd

����; a ∈ ½0; 1�: ð5Þ

What is more, if there exists a trajectory connecting pð0Þ
and pðtfÞ along which all Σa do not decrease, then there
exists an MTP transforming pð0Þ into pðtfÞ.
Not only Σa are a complete set of GEP, but they even

guarantee the existence of a physical realization. In con-
trast, to satisfy the standard entropy production relation
along a trajectory does not ensure the existence of a
physical process.
Algorithmic verification and construction.—If we could

construct the set of states T þ½pð0Þ� achievable under MTPs
from a given pð0Þ, we could use this knowledge for our
optimization purposes. GEP inequalities encode such
information, but of course one cannot check an infinite
number of conditions along an infinite number of potential
trajectories. Furthermore, they carry no information
about the required controls. Remarkably, both problems
can be solved in full generality employing the notion of
continuous thermomajorization, as we explain in detail
in Ref. [25].
Theorem 3.—Given pð0Þ the set of all states T þ½pð0Þ�

achievable from it via arbitrary MTPs can be constructed by
an algorithm in a finite number of steps. Moreover, the
algorithm outputs a sequence of elementary thermalizations
realizing any transformation of interest.
We provide a corresponding Mathematica code in

Ref. [27], and present a toy example for a system of
dimension d ¼ 3 in Fig. 1. On a laptop machine, the
algorithm solves the d ¼ 6 case in minutes and d ¼ 7 case
in hours. Thus, our framework allows one to transform an

FIG. 1. Markovian thermalization in d ¼ 3. Simplex represent-
ing the state space of all three-dimensional probability distribu-
tions. The gray area denotes the set of achievable states from p
under arbitrary Markovian thermal processes when the thermal
state is γ ¼ ½1=2; 1=3; 1=6�. The elementary thermalizations Ti;j,
which fully thermalize the pair of levels i and j and whose action
is indicated by red and blue arrows, play a central role in the
sequence of required controls.
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intractable optimization problem for an objective function g
into an explicit form:

max
fpðtfÞg

g½ pðtfÞ� ¼ max
q∈T þ½pð0Þ�

gðqÞ; ð6Þ

where pðtfÞ are all probability distributions achievable
from pð0Þ via MTPs. Whenever g is convex, the new
optimization problem is finitely verifiable, because the
algorithm returns all extremal points of the set T þ½pð0Þ�.
Note, however, that the set T þ½pð0Þ� is not generally
convex (as can be seen, e.g., in Fig. 1).
Applications.—We now proceed to illustrating some

applications of our framework (see Ref. [34] for further
details). The aim is to provide evidence of its usefulness,
while we believe much more can be done at the interface
with open quantum system dynamics.
We start off with the fundamental protocol of work

extraction. Work in quantum thermodynamics is often
treated as a random variable, but for microscopic systems
its average can be of the same order of magnitude as its
fluctuations [56]. Hence, much attention has been given to
taming such fluctuations [56–59]. Single-shot work extrac-
tion protocols guarantee to extract an amount of workW up
to a failure probability ϵ. More precisely, given an out of
equilibrium system S and access to a thermal environment
E at inverse temperature β ¼ 1=ðkTÞ, the task is to
deterministically excite a battery system B, initially pre-
pared in an energy eigenstate E0, over an energy gap W.
When the probability that B has energy E0 þW is at least
1 − ϵ, one extracts ϵ-deterministic work W [57].
The optimal extraction error under thermal processes

(TP), i.e., all processes satisfying (P2)–(P3) but not
necessarily (P1) (so possibly non-Markovian), can be
computed via the thermomajorization condition of
Ref. [57]. However, when one is limited to MTP, the
optimal error ϵMTPðWÞ can be computed with our algo-
rithm. We observe that memory effects dramatically
decrease the minimal error for given W, see Fig. 2. Note
that ϵMTPðWÞ remains very high even in the W → 0 limit,

showing that converting a nonequilibrium resource into
deterministic work either requires control over the energy
spectrum (as in Refs. [42,56]), or otherwise relies on
environmental memory effects.
In a similar manner, we can provide model-independent

evidence of the role played by system-environment corre-
lations in boosting cooling processes. Consider a system
initially at equilibrium with the environment at inverse
temperature β, and the task of cooling it down by
maximizing its ground state occupation through a round
of algorithmic cooling protocol. The first step of the
protocol is to unitarily invert the occupations (while
thermal occupations are monotonically decreasing with
growing energy, the inverted occupations are monotoni-
cally increasing); and the second step is to optimally
interact it with the bath to maximize the occupation of
the ground state. Now, the interactions may be optimized
over all TPs or all MTPs, and the difference in performance
quantifies the boost to cooling due to memory effects. We
illustrate this in Fig. 3 for a four-level system with an
equidistant spectrum.
Our framework allows one not only to investigate the

difference in performance of thermodynamic protocols
with and without memory, but also to interpolate between
these two extremes. This question relates to the well-known
topic of catalysis in thermodynamics [49,60,61]. Catalysis
is the phenomenon by which a certain transformation
pð0Þ ↦ q is only possible when aided by an auxiliary
system c (the catalyst, playing the role of a memory), which
is given back unchanged and uncorrelated at the end:
pð0Þ ⊗ c ↦ q ⊗ c. To illustrate this, we consider a two-
level system initially at temperature two times higher than
that of the bath. Under MTPs and with no catalyst, the
system can be cooled at most to the temperature of the bath
[62,63]. Our algorithm shows that a qubit thermal catalyst
already allows one to cool the original system below the
bath’s temperature, highlighting how catalysis is useful not
only in the abstract resource theory setting [49,60,61], but
also in the context of Markovian master equations

FIG. 2. ϵ-deterministic work extraction from a two-level
system. Minimal error ϵ as a function of the work W extracted
from a two-level system with energy splitting Δ prepared in a
thermal state at temperature 1=βS smaller than the environmental
temperature 1=βE. System-environment interactions are modeled
by TP or MTP. Parameters: βSΔ ¼ 2 and βEΔ ¼ 1.

FIG. 3. Optimal cooling of a four-level system. Optimal change
of the ground state population δpopt

0 for a four-level quantum
system initially at equilibrium with inverse temperature β in one
round of algorithmic cooling consisting of a unitary inversion
of the populations, followed by the optimal TP or MTP. The
system has equidistant energy spectrum with smallest energy
difference Δ.
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describing standard thermalization models. What is more,
differently from previous approaches, the algorithm returns
an explicit set of controls implementing the protocol. This
tackles one of the main challenges that insofar prevented
the general results on catalysis to impact practical
protocols.
Finally, we want to point out that our framework was

recently used to obtain rigorous, quantitative evidence that
environmental memory effects are beneficial to the effi-
ciency of biomolecular processes [28]. More precisely, the
authors of Ref. [28] demonstrated that the optimal photo-
isomerization yield in the presence of memory effects is
strictly larger than in the Markovian regime.
Outlook.—We constructed a framework to systematically

perform optimization over thermalization processes and
algorithmically construct optimal protocols. The algorithm
yielded encouraging results in a range of relevant applica-
tions. A promising direction to probe higher dimensional
systems (d ≥ 8) is to relax the current exhaustive search
to a heuristic algorithm, or to focus on short elementary
thermalization sequences. Pushing the achievable dimen-
sion up, and combining the current algorithm optimizing
the thermalization stage with alternative methods to opti-
mize unitary stages (as we implicitly did in the HBAC
application), will likely open up a range of applications,
such as the optimization of quantum thermodynamic cycles
of heat engines [64]. At the same time, our framework also
offers a rigorous information-theoretical foundation to the
dynamical viewpoint of quantum thermodynamics com-
plementing the toolbox of master equation approaches, as
we have seen with the systematic construction of GEP
inequalities.
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