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We explore a wide range of fundamental magnetic phenomena by measuring the dephasing of matter-
wave interference fringes upon application of a variable magnetic gradient. The versatility of our
interferometric Stern-Gerlach technique enables us to study the magnetic properties of alkali atoms, organic
radicals, and fullerenes in the same device, with magnetic moments ranging from a Bohr magneton to less
than a nuclear magneton. We find evidence for magnetization of a supersonic beam of organic radicals and,
most notably, observe a strong magnetic response of a thermal C60 beam consistent with high-temperature
atomlike deflection of rotational magnetic moments.
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Introduction.—Magnetism, from the quantized deflec-
tion of atoms in the Stern-Gerlach experiment [1] to bulk
ferromagnetism [2], is quantum mechanical at heart. This
relationship is symbiotic: Magnetic phase shifts in neutron
interferometry were essential in demonstrating a number of
fundamental quantum phenomena [3–6], and magnetic
gradients have been employed as coherent beam splitters
in matter-wave interferometry [7].
Here, we use matter-wave interferometry to measure the

magnetic properties of the interfering particles themselves.
We apply tunable magnetic gradients within the Long-
baseline Universal Matter-wave Interferometer (LUMI)
[8,9] and monitor the response of the interference fringes.
Unlike in classical beam deflectometry, where one mea-
sures the deflection and/or broadening of a macroscopic
beam profile, the presence of nanoscale interference fringes
allows us to resolve nanometer-level deflections and forces
as small as 10−26 N [10]. While measuring the envelope
phase shift of the fringes is suitable for induced dipole
moments [11], monitoring the fringe visibility enables us to
study species with permanent dipole moments with relaxed
phase stability requirements.
In a three-grating Talbot-Lau interferometer like LUMI

[12], a near-field interference pattern is imprinted into the
molecular beam density behind the second grating. This
takes the form of a near-sinusoidal modulation with
periodicity d if the gratings are separated by near multiples
of the Talbot length LT ¼ d2=λdB, with λdB the de Broglie

wavelength and d the grating periodicity. Transversely
scanning the third grating while monitoring the transmitted
flux reveals the interference fringes. Talbot-Lau interfer-
ometry is a robust technique with good mass scalability and
lenient coherence requirements [13], making it particularly
attractive for the measurement of molecular properties.
The universality of the interferometry scheme enables us

to study a variety of species with vastly different magnetic
properties, from alkali atoms to organic molecules. In the
case of atoms, visibility modulation upon application of a
magnetic gradient is due to the dephasing and rephasing of
the atomic hyperfine substates in the unpolarized beam,
similar to previous atom interferometry experiments [14–
16]. The magnetic phase accumulation for isolated mole-
cules is more subtle due to additional degrees of freedom
such as vibrational and rotational modes. At low vibrational
temperatures, spins can be locked to a molecular axis [17],
while internal spin relaxation [18] and avoided crossings in
the Zeeman manifold due to spin-rotation coupling [19] can
lead to Langevin-like paramagnetism and one-sided deflec-
tion in a magnetic gradient. Such effects complicate the
interpretation of molecular Stern-Gerlach experiments [20],
but at the same time provide access to the richer physics of
molecular magnetism.
The key features of our setup are sketched in Fig. 1.

Knudsen cells were used to produce thermal atomic and
fullerene beams, while a pulsed valve was used to create a
supersonic beam of organic radicals. The interferometer
consists of three gratings of period d ¼ 266 nm equidis-
tantly spaced by L ¼ 0.98 m. Three nanomechanical gra-
tings were used for the atomic experiments, while an
optical phase grating formed by a retroreflected 532 nm
laser beam was used as the central grating for the
molecules [21].
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We apply magnetic gradients across the molecular beam
to yield a differential magnetic phase shift for the inter-
ferometer paths. For the atomic experiments, we employed
anti-Helmholtz coils similar to Refs. [15,16]. The zero-field
region at the coil center was avoided by 8 mm to prevent
nonadiabatic spin flips. For the molecular experiments, we
required stronger magnetic gradients, so we instead used a
permanent rare-earth magnet that could be translated trans-
versely to the molecular beam. The lengths L1;2 defined in
Fig. 1 extend beyond the physical extent of the coils or
permanent magnet, taking fringe fields into account (see
Supplemental Material [22]). Characterizations of the
magnetic fields as well as the modeled field gradients
for both the coils and the permanent magnet are provided in
the Supplemental Material [22]. We find good agreement
with theoretical models for both systems [31,32].
Atomic theory.—Atoms with nonzero spin exhibit

Zeeman splitting in a magnetic field B, and an atomic
beam is thus symmetrically deflected in a magnetic
gradient [1]. Our atomic experiments are conducted in
the weak-field regime (B < 100 G), and are therefore
sensitive to the hyperfine structure rather than merely
the electronic spin. We can write the semiclassical force
on a given hyperfine substate mF as

F ¼ −∇ð−μ · BÞ ¼ mFgFμB∇B; ð1Þ

with B ¼ jBj, μ the magnetic moment, gF the Landé g
factor, and μB the Bohr magneton. Here we have implicitly
assumed adiabatic following of μ along B. The transverse
component of the force yields an envelope phase shift
of the interference fringes [33]. For a given longitudinal

velocity v and substate mF, this phase shift is (see also
Supplemental Material [22])

ϕmF
¼ 2π

d
mFgFμB
mv2

C ð2Þ

with

C ¼
Z
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0
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z

0
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0
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dz: ð3Þ

Here, Ldrift ¼ L − L1 − L2, and B in general contains a
small constant (i.e., not current-dependent) contribution
due to background fields. The first term corresponds to the
deflection within the force region, while the second term
accounts for the displacement that accumulates over the
remaining drift length, assuming a constant forward velo-
city. For the anti-Helmholtz coils, we find C ¼ 10.3 Gm
for a current of 1 A.
The measured interference pattern is the sum of the N

individual hyperfine interference patterns averaged over the
velocity distribution ρðvÞ. Considering the symmetry of the
�mF deflections, the visibility V can be written as

V ¼ V0

N

����
Z

∞

0

ρðvÞAðvÞ
X
F;mF

cos½ϕmF
ðvÞ�dv

����: ð4Þ

Here, V0 is the maximum visibility in the absence of
magnetic gradients, and AðvÞ is a weak dependence of the
visibility amplitude on velocity [34], which we neglect
for the atomic and radical experiments. The hyperfine
structures of the studied isotopes are provided in the
Supplemental Material [22].
Cesium results.—In Fig. 2, we show the interference

visibility of 133Cs as a function of the anti-Helmholtz coil
current for two different velocity distributions. To a good
approximation, all magnetic substates mF are equally
populated in the thermal atomic beam. As the magnetic
gradient is increased, the visibility decreases as the inter-
ference fringes of the various hyperfine states are inter-
spersed, until a value at which each pair of hyperfine
substates �mF is mutually deflected by a multiple of d, at
which point the patterns overlap and the visibility revives.
The broad velocity distribution washes out these revivals,
leaving an asymptote corresponding to the number of
nonmagnetic (mF ¼ 0) substates divided by the total
number of hyperfine substates N (2=16 for 133Cs).
There is good agreement between the data and Eq. (4)

when we include a fitted constant offset to C of 0.4 Gm,
which we attribute to background field gradients (see
Supplemental Material [22]). The deviation from theory
at currents below 0.15 A is consistent with residual
magnetic fields along the flight path, while the drop at
currents above 4.5 A is likely nonmagnetic in origin.

FIG. 1. The interferometer with three equidistantly spaced
gratings G1−3 and the magnetic interaction region between G2

and G3. The latter consists of an anti-Helmholtz coil pair for the
atomic experiments and a permanent magnet for the molecular
experiments. G3 is scanned along the x axis to mask the
sinusoidal interference fringes before mass selection and detec-
tion of the transmitted flux. The studied species are shown with
their corresponding point groups, the origin of their dominant
magnetism observed in our scheme, and typical magnitudes of
the associated magnetic moments.
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See the Supplemental Material [22] for further details as
well as additional rubidium data.
Molecular theory.—For atoms and molecules with nei-

ther nuclear nor electronic spin, strong magnetic gradients
can still yield observable deflections [10,35,36] due to
induced magnetic moments μ ¼ mχmB=μ0, with m the
particle mass and χm the mass susceptibility. The resulting,
typically diamagnetic [2], deflection of the interference
pattern is one-sided, causing visibility loss with increasing
ðB · ∇ÞBx due to the finite velocity spread [9,10].
Molecular beam dynamics are richer than for atomic

beams, since there are typically a number of excited
molecular body rotations with corresponding rotational
magnetic moments μrot. For molecules with both spin
and rotational angular momentum in an external magnetic
field, one must consider spin-rotation coupling in addition
to the usual Zeeman interaction terms [37]. The resulting
Zeeman splitting thus depends on whether B is strong
enough to decouple spin and rotation or if a coupled basis is
more appropriate. Since the rotational g factor (grot) is
typically much smaller than the spin g factor (gspin), the
Zeeman splitting is usually dominated by spin in the strong-
field regime of the molecular experiments [20].
Stern-Gerlach experiments on polyatomic species with

spin and rotational degrees of freedom can exhibit one-
sided rather than symmetric deflection as obtained for
atoms. This has been observed in metal cluster beams [38–
40], which exhibit a time-averaged projection of the
magnetic moment onto the magnetic field axis of the form
μeff ∝ μ2B=kBT. This corresponds to the low-field and
high-temperature limit of the Langevin function, typically

associated with bulk paramagnetism [41]. In molecular
beams, the numerical prefactor of μeff and the relevant
temperature depend on whether the spin is locked to the
molecular framework or can thermally fluctuate [17,42].
The origin of magnetization in an isolated mole-
cular system has been the subject of debate and has been
explained via both a superparamagnetic model [18,42,43]
and an avoided crossing model arising from spin-rotation
coupling [19,44,45].
The response of molecular interference fringes to a

magnetic gradient depends on whether the deflection is
symmetric or one-sided. For atomlike symmetric deflec-
tion, the theory is analogous to Eq. (4), while for one-sided
deflection one expects monotonic visibility loss due to
averaging over the velocity distribution given by

V ¼ V0

����
Z

∞

0

ρðvÞAðvÞ exp½iϕðvÞ�dv
����; ð5Þ

where ϕ ∝ μeff for magnetized molecules or ϕ ∝ χmB for a
diamagnetic response.
Organic radical results.—The organic radical TEMPO

[(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl] is used as a spin
label in electron spin resonance spectroscopy and has also
been studied in Stern-Gerlach experiments [46,47]. A
molecular beam was formed by supersonic expansion from
a pulsed valve [48] (see Supplemental Material [22]) with a
Gaussian velocity distribution centered at 694 m=s and a
spread of only 23 m=s. The response of TEMPO interfer-
ence fringes to the permanent magnet is shown in Fig. 3.
Analogous experiments with the TEMPO dimer indicated
qualitatively similar behavior, albeit with poorer statistics
due to the lower beam flux.
While a quantitative understanding of the magnetic

response requires knowledge of the spin-rotation coupling
in the system, we consider two simplified regimes. The
dashed line shows a symmetric deflection model in which
the response is determined exclusively by the unpaired
electron in the strong-field regime (since gspin ≫ grot; see
earlier discussion). The dotted line instead assumes one-
sided deflection due to Langevin-like spin alignment in the
locked-moment regime [17], where we have used Trot ¼
10 K (a typical value for such supersonic expansions [49])
and approximated the molecule as a prolate symmetric top
(see Supplemental Material [22]). Both the damping of the
oscillations in the symmetric deflection model and the
visibility loss of the one-sided deflection model are due to
the velocity spread of the beam.
The observed response lies between these regimes: The

solid line shows a one-sided deflection model assuming an
effective magnetic moment of μeff ¼ 0.1 μB in Eq. (5).
Such an intermediate response could be due to TEMPO
exhibiting a degree of Langevin-like magnetization (poten-
tially due to spin-rotation coupling [19,44]) as well as
residual symmetric deflection [45]. This is consistent with

FIG. 2. Cesium interference visibility as a function of the anti-
Helmholtz coil current. The solid curves are obtained from
Eq. (4), where we fit a small constant offset to the calculated
C factor. The inset shows the high-current behavior, with the line
indicating the expected asymptote. Each point consists of
multiple interference scans, and error bars are standard errors.
Visibilities are normalized using the asymptotic value rather than
the zero-current point (see Supplemental Material [22]).
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previous experiments [47], in which indications of asym-
metric splitting were tentatively attributed to an avoided
crossing model.
Fullerene results.—The response of C60 and C70 inter-

ference visibility to the permanent magnet is shown in
Fig. 4. The weakly diamagnetic nature of these fullerenes in
bulk is well established [50]. The 12C70 response agrees
well with the predicted visibility loss due to one-sided
diamagnetic deflection. The theory curve has no free
parameters, using only the literature diamagnetic suscep-
tibility value of C70 and the empirical velocity distribution.
An observed phase shift of the interference fringes away
from the magnet further confirms the expected diamagnetic
response. The magnitude of the diamagnetically induced
magnetic moment near the surface of the magnet is
calculated to be ≈0.4 μN , with μN the nuclear magneton.
With its unpaired nuclear spin, 12C69

13C exhibits a more
rapid loss of fringe visibility than 12C70. The behavior can
be described by symmetric deflection of the 13C magnetic
moment (together with the one-sided diamagnetic deflec-
tion), assuming a strong-field response dominated by the
nuclear spin. The stronger response of 12C69

13C compared
to 12C70 implies an absence of Langevin-like magnetiza-
tion, which would predict complete relaxation of the
nuclear spin (since kBT ≫ μB).
Themost surprising finding in thismeasurement serieswas

the strong magnetic response of C60, as seen for all iso-
topomers (see Supplemental Material [22]). With no elec-
tronic spin or orbital angular momentum (or even nuclear, in

the case of 12C60), we expected to observe an even weaker
diamagnetic response than 12C70. Instead, we observed a
visibility drop which would imply a susceptibility 2 orders of
magnitude larger than the literature diamagnetic value.
Since the visibility is completely washed out at high

fields, the underlying mechanism must apply to the majority
of C60 molecules in the beam, ruling out rare transient events
like triplet excitation in the optical grating. We also ruled out
the possibility that deformed cage structures could have led
to dangling bonds [51] by measuring a single NMR peak at
142.8 ppm for both unsublimated and sublimated C60

samples. Langevin-like magnetization should play no role
here in the absence of spin-rotation coupling [44].
Instead, we attribute the behavior to the symmetric

deflection of rotational magnetic moments. The rotational
moment of a spherical top molecule is given by
μrot ¼ grotμNJ, with J the rotational angular momentum
[52]. We calculate grot with density functional theory at the
B3LYP/def2-QZVPP level of theory [53,54] using the
GAUSSIAN 16 program [55] (see Supplemental Material
[22]). We find an isotropic value of grot ¼ −0.0141
(μN units), which, for the most-occupied rotational state
Jmax ¼ 466 [56], gives a maximum projection onto the
magnetic field axis of 6.6 μN .
C60 thus behaves as an atom in a high spin state, with the

substitution mFgFμB → MgrotμN , with M the quantum
number for the projection of J onto B. The visibility
response can be calculated using Eq. (4), replacing the
summation over F, mF with an integration over M from
−Jmax to Jmax [57]. This gives the solid theory curve in
Fig. 4, which agrees well with the measured response.

FIG. 3. TEMPO interference visibility as a function of the
magnet distance. We consider three models: a symmetric de-
flection model of the unpaired electronic spin (dashed line), a
one-sided deflection model assuming a purely Langevin-like
response at 10 K (dotted line), and a one-sided deflection model
assuming μeff ¼ 0.1 μB (solid line). The nonzero baseline of the
data is likely a fitting artifact, also seen for the C60 isotopomers in
the Supplemental Material [22]. Visibilities are normalized to the
first data point (magnet withdrawn) and error bars are standard
errors.

FIG. 4. C60 (all isotopomers), 12C70 and 12C69
13C interference

visibility as a function of the magnet distance. There are three
distinct magnetic phenomena on display here: one-sided dia-
magnetic deflection of 12C70, symmetric deflection of the nuclear
spin of 12C69

13C, and symmetric deflection of rotational moments
of C60. Visibilities are normalized to the first data point (magnet
withdrawn) and error bars are standard errors. There are no free
parameters in the theory curves.
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To understand why C70 shows no comparably strong
effect of rotational moments (12C70 is consistent with a
diamagnetic response alone), one must consider the differ-
ence in molecular symmetry. For a prolate symmetric top
like C70, there is the additional projection of J onto the
molecular symmetry axis given by the quantum number K.
The ensemble average over K combined with the small grot
values of C70 (see Supplemental Material [22]) reduces the
magnitude of the effect [58]. Moreover, the small grot values
mean that the timescales of precession and magnetic
field change become comparable, leading to a breakdown
of adiabatic following and a reduced role of rotati-
onal moments in the case of C70 (see Supplemental
Material [22]).
Conclusion.—Our interferometric Stern-Gerlach tech-

nique offers significantly improved spatial and force
resolution compared to classical beam deflectometry and
enables us to measure magnetic effects spanning orders of
magnitude in strength in the same device. We have
observed the symmetric splitting of alkali atoms, the
magnetization of an organic radical beam, and the weak
one-sided diamagnetic deflection of C70. Most intriguingly,
we have observed a strong magnetic response of C60, which
in bulk is even less diamagnetic than C70. The magnetic
response is consistent with atomlike deflection of rotational
magnetic moments. Particularly noteworthy is the emer-
gence of this quantized behavior at high rotational temper-
atures, where the classical limit is typically reached.
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