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Floquet engineering offers a compelling approach for designing the time evolution of periodically driven
systems. We implement a periodic atom-light coupling to realize Floquet atom optics on the strontium
1S0 − 3P1 transition. These atom optics reach pulse efficiencies above 99.4% over a wide range of
frequency offsets between light and atomic resonance, even under strong driving where this detuning is on
the order of the Rabi frequency. Moreover, we use Floquet atom optics to compensate for differential
Doppler shifts in large momentum transfer atom interferometers and achieve state-of-the-art momentum
separation in excess of 400 ℏk. This technique can be applied to any two-level system at arbitrary coupling
strength, with broad application in coherent quantum control.
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Periodic driving has been employed for coherent control
of quantum systems ranging from single atoms to many-
body and solid-state systems, and can reveal new non-
equilibrium phenomena [1–4]. In addition to facilitating the
spectral design of dressed states, Floquet modulation can be
used to engineer the time-domain dynamics of two-level
systems in the presence of a strong drive [5,6]. This finds
application in quantum information, where periodic driving
can increase the robustness of quantum superpositions
against decoherence and dephasing [7,8], as well as
improve the fidelity of quantum gate operations [9,10].
Such high-fidelity state manipulations are closely related to
atom optics used in light-pulse atom interferometry, where
an atomic system is interrogated with light at optical
frequencies to introduce inertial sensitivity [11,12].
Highly efficient atom optics allow for the application of
many sequential light pulses, enabling large momentum
transfer (LMT) atom interferometers with increased space-
time area and sensitivity [13–16].
In an LMT interferometer, the atomic center-of-mass

wave function is split into two components that follow
distinct trajectories, with the separation between these arms
determined by the number of photon momenta transferred
by the atom optics. For fast atom optics pulses, the
bandwidth can be sufficiently broad to efficiently drive
transitions on both interferometer arms, despite the differ-
ential Doppler shift [17]. However, continuing to scale up
the momentum separation leads to a substantial loss in
transfer efficiency when the Doppler shift Δ approaches the
atom-light coupling strength Ω. There are a number of
well-established strategies to address such frequency errors
in two-level systems, including composite pulse sequences
[18–20], adiabatic rapid passage (ARP) techniques [21–
23], and optimal quantum control protocols [24,25]. In

many cases, it is of interest to design pulses that provide
broadband excitation to accommodate a continuum of
detuning errors, such as Doppler shifts due to the temper-
ature of an ensemble of atoms. Instead, we study Floquet-
engineered atom optics designed to achieve perfect transfer
efficiency for a discrete set of detuning errors, correspond-
ing to the two velocities of the atom interferometer arms.
We show that Floquet atom optics can compensate for a
wide range of Doppler detunings in both the strong
(Ω ∼ jΔj) and weak (Ω ≪ jΔj) coupling regimes, thereby
circumventing a leading loss mechanism in LMT atom
interferometry.
We consider a periodic Hamiltonian using light on

resonance with an optical transition in a two-level system
at rest in the lab frame. Using the rotating wave approxi-
mation (RWA) to neglect counterrotating terms at optical
frequencies, the Hamiltonian describing one of the inter-
ferometer arms with Doppler detuning Δ is

ĤðtÞ ¼ ℏΔ
2

σ̂z þ
ℏΩðtÞ
2

σ̂x;

where ΩðtÞ is some real, time-dependent Rabi coupling,
and σ̂j are the Pauli operators [26]. We periodically
modulate the amplitude of the light pulse envelope at some
period T, such that ΩðtÞ ¼ Ωðtþ TÞ. The fundamental
modulation frequency β≡ 2π=T is generally detuned by
some modulation offset δ≡ β − jΔj with respect to the
Doppler-shifted resonance. Note that despite making the
RWA at optical frequencies, counterrotating terms at
harmonics of β cannot be ignored in the strong coupling
regime (Ω ∼ jΔj). As a result, we effectively realize the
dynamics of the strong drive Rabi model [27,28].
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In our case, an interferometer arm has a lab-frame
Doppler shift of either Δ ¼ þδωD or Δ ¼ −δωD. For
any purely amplitude-modulated (real) function ΩðtÞ, the
evolution of the two arms on the Bloch sphere is instanta-
neously mirror symmetric [29]. This symmetry guarantees
the two interferometer arms will have the same transfer
efficiency for any pulse shape and duration.
Using Floquet’s theorem, we can write the time evolu-

tion of the state in terms of the two Floquet modes [30]. In
the strong coupling regime (Ω ∼ jΔj), these modes are the
time-dependent analogs of the dressed states [31]. By
analogy with Rabi oscillations in the weak coupling limit,
we may describe the strong coupling Floquet dynamics as
resulting from a diabatic projection of the initial quantum
state into a superposition of time-dependent dressed states
(the Floquet modes).
Assuming the system starts in one of the bare atom states

jgi or jei, we engineer efficient transitions to the opposite
state by analyzing the evolution of the Floquet modes as a
function of the modulation offset δ and pulse duration tπ .
For weak coupling (Ω ≪ jΔj) and sinusoidal drive
ΩðtÞ ¼ Ω0 cos βt, we recover the conventional RWA
π-pulse condition tπ ¼ π=Ωg with generalized Rabi fre-

quencyΩg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ðΩ0=2Þ2

p
, where maximal efficiency is

reached when the corotating frequency component of ΩðtÞ
is on resonance (δ ¼ 0). In contrast, when Ω ∼ jΔj the
analogous resonance condition becomes time dependent,
reflecting the fact that the Floquet modes periodically
exchange energy with the drive. Nevertheless, for any Ω
and Δ, a simultaneous solution can be found for δ and tπ
that satisfies a generalized π-pulse condition to allow
perfect transfer [32]. We take advantage of this to engineer
optimized Floquet π pulses.
We experimentally demonstrate Floquet atom optics

on the 689 nm transition in 88Sr, with jgi ¼ j1S0i and
jei ¼ j3P1; m ¼ 0i. First, 106 atoms are prepared at a

temperature of 2 μK and a cloud size of σ ¼ 135 μm.
The atoms are interrogated with a sequence of alternating
laser pulses from opposite directions as in [17], each
derived from a Ti:sapphire laser that is frequency stabilized
to a reference cavity. The pulse envelopes are controlled by
two single-pass acousto-optic modulators (AOMs) driven
by independent channels of an arbitrary function generator
(AFG). The light is delivered to the atoms via optical fibers,
and each beam has an optical power of 180 mWwith a 1=e2

radial waist of 2 mm. On resonance, we achieve a Rabi
frequency of Ω0 ¼ 2π × 5 MHz and a π-pulse duration of
t0 ¼ 100 ns. For amplitude-modulated Floquet pulses, the
carrier waveform is modulated by a chosen envelope
function ΩðtÞ using the AFG. To ensure pure amplitude
modulation (AM), we interferometrically measure any
residual self-phase modulation in the optical fibers and
apply a compensatory phase to the waveform [32]. To
simulate an arbitrary Doppler shift Δ ¼ �δωD for atoms at
rest in the lab frame, we detune the laser carrier frequency
from resonance using the AOMs.
We characterize the dynamics of the two-level system

during a Floquet pulse with the following experimental
sequence. First, a bias magnetic field of 100 G is applied to
suppress unwanted excitations to the m ¼ �1 Zeeman
sublevels of j3P1i. We then transfer the atoms to the excited
state jei using a resonant π pulse. Next, we apply a Floquet
pulse of variable duration. Before detection, a 500 ns push
pulse on the 1S0-1P1 transition at 461 nm leads to vertical
separation of the states after time of flight. Finally, we
measure the state populations via fluorescence imaging on
this same transition. Our choice to initialize the atoms in jei
when characterizing Floquet π pulses minimizes detection
errors caused by spontaneous decay during the push pulse.
Figure 1(a) shows the normalized ground state popula-

tion during a Floquet pulse with sine-wave modulation
ΩðtÞ ¼ Ω0 cos βt at laser detunings Δ ¼ �2π × 2 MHz.

FIG. 1. (a) Measured normalized ground state population for a sine-wave Floquet pulse (black points) and associated pulse envelope
Ω̄ðtÞ≡ ΩðtÞ=Ω0 (bottom panel) with modulation offset δ ¼ −2π × 0.35 MHz, detuning Δ ¼ �δωD ¼ �2π × 2 MHz, and Rabi
frequency Ω0 ¼ 2π × 5 MHz. Numerical density matrix solutions are shown for both positive (blue) and negative (red) detuning with no
free parameters. These state trajectories are also illustrated on the Bloch sphere for an ideal Floquet π pulse without spontaneous emission.
(b) Square-wave Floquet pulse with δ ¼ 2π × 1.75 MHz, Δ ¼ �2π × 2 MHz, and Ω0 ¼ 2π × 5 MHz. The blue and red dashed arrows
show the torque vectors for the associated Doppler detunings, which flip from left to right at t ¼ T=2 as suggested by the gray arrows.
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The observed dynamics notably differ from a resonant Rabi
oscillation, which is a manifestation of the time dependence
of the Floquet modes. We find efficient population inver-
sion > 99% at the pulse parameters tπ ¼ 232 ns and
β ¼ 2π × 1.65 MHz. As expected, we observe symmetric
time evolution for equal and opposite detunings. The
calculated state evolution during the Floquet π pulse is
shown on the Bloch sphere, illustrating the mirror sym-
metry for the two cases. We repeat the same characteriza-
tion for square-wave modulation ΩðtÞ ¼ Ω0sgnðcos βtÞ,
where the sign of the pulse envelope is switched every half-
period T=2 [see Fig. 1(b)]. Efficient population inversion
> 99% is achieved at tπ ¼ 183.5 ns and β ¼ 2π×
3.75 MHz, and we again observe symmetric time evolu-
tion. While both approaches achieve comparable fidelity,
the optimal pulse duration for square-wave modulation is
shorter due to higher rms pulse amplitude [32].
The short duration (tπ < T) of the pulses used in Fig. 1

suggests a complementary time-domain description of the
Floquet dynamics analogous to a composite pulse sequ-
ence. In particular, the piecewise constant amplitude of the
square-wave excitation allows for a simple geometric
solution of the state evolution on the Bloch sphere.
During each half-period of modulation T=2, the state
vector precesses at a constant rate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0 þ Δ2
p

, tracing
out a circular arc on the sphere. This arc is coincident with
the base of a cone that has its vertex at the origin and an axis
given by the torque vector, ðΩ0; 0;ΔÞ for the first half-
period. Every subsequent half-period, ΩðtÞ changes sign,
mirroring the torque vector about the yz plane and leading
to further precession around the base of the associated cone.
Thus, finding optimal pulse parameters is reduced to a
purely geometric problem of determining the intersections
of a series of cones that pass through the two poles of the
Bloch sphere. For 0 ≤ jΔj ≤ Ω0 a solution exists using two
cones:

tπ ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0 þ Δ2
p ; β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0 þ Δ2
p

1þ 2
π cos

−1ð
ffiffiffiffiffiffiffiffiffiffiffi
Ω2

0
þΔ2

p
ffiffi
2

p
Ω0

Þ
:

This corresponds to the dynamics shown in Fig. 1(b). For
larger detunings, additional half-periods are required to
achieve efficient state transfer. Specifically, for detunings
in the range cot ½π=2ðn − 1Þ� ≤ ðjΔj=Ω0Þ ≤ cot ðπ=2nÞ
with integer n, a solution can be found with n cones
(half-periods). We find analytic solutions for tπ and β up to
n ¼ 5 [32].
Figure 2 shows optimal Floquet atom optics parameters

as a function of detuning Δ for both sine-wave and square-
wave AM. We determine the maximum measured transfer
efficiency with a two-parameter grid search over δ and tπ .
The cusps in Figs. 2(a) and 2(b) mark the boundaries of
detuning ranges where n half-periods are required for
optimal transfer. In the large detuning limit jΔj ≫ Ω0,

FIG. 2. (a) Experimental characterization of optimal Floquet
π-pulse modulation offset δ ¼ β − jΔj as a function of laser
detuning Δ=2π, for sine-wave (circles) and square-wave
(squares) AM. (b) Experimentally optimized pulse duration tπ .
The colored curves (blue, green, yellow, and red) are the analytic
solutions for square-wave modulation, with the color correspond-
ing to the number of half-periods n required to reach optimal
transfer (n ¼ 2, 3, 4, and 5, respectively). The brown theory
curves are numerical solutions of the Schrödinger equation for
sine-wave modulation. (c) Measured efficiency of square-wave
modulated pulses. The dashed, colored curves are the expected
pulse efficiency based on the pulse duration, extrapolated from
the measured efficiency of resonant π pulses (dotted gray line).
The error bars and bands show one standard deviation of
measurement uncertainty. (d) Example time evolution for Δ ¼
2π × 7 MHz (left) and 2π × 14 MHz (right) with associated
numerical Schrödinger fits corresponding to n ¼ 3 (green) and
n ¼ 5 (red). As the detuning increases, the dynamics converge
toward Rabi oscillations at reduced frequency ð2=πÞΩ0.
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the optimal modulation frequency converges to δ ¼ 0 for
both modulation types, as expected in the weak coupling
regimewhere the RWA is valid [see Fig. 2(a)]. In this regime,
the pulse duration converges to the expected tπ ¼ 2t0 for
sine-wave modulation and tπ ¼ ðπ=2Þt0 for square-wave
modulation [Fig. 2(b)], corresponding to the Rabi couplings
of the respective Fourier amplitudes at the corotating
frequency β [32]. We see this same asymptotic behavior
in the timedomain in Fig. 2(d), where for larger detunings the
Floquet dynamics begin to resembleRabi oscillations that are
only weakly perturbed by counterrotating terms. Thus, we
observe agreement with theory for Floquet π pulses across
the strong and weak coupling regimes.
Figure 2(c) shows the measured efficiency of the square-

wave Floquet pulses. The dominant source of inefficiency
is spontaneous decay during the pulse, and as a result, the
square-wave pulses are uniformly more efficient than the
best measured efficiencies of the sine-wave pulses due to
their shorter duration [Fig. 2(b)]. To reduce detection noise
on the measured efficiency, we apply six consecutive
Floquet pulses and infer the average efficiency per pulse.
To account for shot-to-shot variation in pulse intensity, we
extract the peak efficiency from a histogram of 100 shots by
fitting to a model that includes pulse area noise and addi-
tive detection noise [32]. The observed peak efficiency is
≥ 99.4% for all detunings, compared to 99.63(4)% for a
resonant conventional π pulse. The variation of the pulse
efficiency as a function of detuning is explained by
differences in spontaneous emission loss due to the
corresponding pulse duration, indicating negligible losses
from Doppler detuning. Our pulse efficiencies are compa-
rable to recent atom interferometry results [35], as well as
experiments with single atoms in optical tweezers [36].
To demonstrate the advantage of Floquet atom optics

over conventional pulses, we construct LMT Mach-
Zehnder interferometers with momentum separation
Nℏk, where N is the LMT order. The sequence consists
of a π=2 beam splitter pulse, followed by a series of π
pulses from alternating directions, each of which transfers a
net 2ℏk, and then a final π=2 pulse, as described in [17].
Note that there is no added interrogation time between the
beam splitter and mirror pulses. For an LMT interferometer
using Floquet atom optics, each pulse must be individually
optimized for the instantaneous velocities of the interfer-
ometer arms. The pulse parameters δ and tπ are determined
by the analytic expressions above based on the Doppler
detuning. Since conventional pulses are marginally more
efficient at the lowest velocities, we use conventional
pulses until the arm velocities reach 26ℏk and then switch
to Floquet pulses for the majority of the sequence.
The visibility of the interferometer is measured by

scanning the phase of the final π=2 pulse and fitting the
amplitude of the resulting sinusoidal interference fringe
[see Fig. 3 (inset)]. Each point in the scan is the population
in a bin around the center of each interferometer output

port, with bin size chosen to maximize the interferometer
signal-to-noise ratio. When using conventional pulses, the
visibility is lost for momentum separation above 200 ℏk. In
comparison, with Floquet atom optics we maintain inter-
ferometer visibility beyond 400 ℏk [see Fig. 3]. This is the
highest momentum separation with sequential-pulse atom
optics reported to date, even rivaling coherent acceleration
with optical lattice-based methods [37,38]. Additionally,
we achieve state-of-the-art efficiency per ℏk, competitive
with other atom-optics techniques [39–41].
It is illustrative to compare Floquet atom optics to other

pulse engineering methods. In contrast to Floquet pulses,
techniques such as composite pulses, ARP, and optimal
control typically require at least twice the conventional
π-pulse duration t0 [24,42,43], leading to increased sponta-
neous emission loss. Additionally, Floquet pulses can be
simple to implement (e.g., AM using a mixer) without
necessarily requiring an AFG. In the case of ARP, the state
vector precesses multiple times as it adiabatically follows
the torque vector, leading to unwanted dynamic phase
accumulation [23]. Floquet pulses instead result from a
diabatic projection into the Floquet modes, avoiding
systematic errors associated with extensive adiabatic pre-
cession. As mentioned, square-wave Floquet pulses may be
considered a type of composite pulse sequence in which the
phase toggles between 0 and π [44]. In contrast to
composite pulses that incorporate an unrestricted set of
phases, Floquet atom optics are instantaneously mirror
symmetric with respect to detuning. In the context of
NMR, similar schemes have been considered to compen-
sate for a distribution of pulse inhomogeneities, including
Floquet modulation [45,46] and symmetric composite

FIG. 3. LMT interferometer visibility as a function of the
momentum separation of the arms using Floquet atom optics
(blue squares) and conventional π pulses (gray diamonds). The
dotted lines are a guide to the eye. The error bars are the standard
deviation of the residuals of the sinusoidal fits. The inset is an
example for a 201 ℏk interferometer, showing the normalized
excited state population versus the interferometer phase for
Floquet atom optics (blue) and conventional pulses (gray), as
well as the associated fits (solid curves).
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pulse sequences [44]. Our approach differs in that we take
advantage of strong coupling dynamics to tune the modu-
lation offset δ and pulse time tπ to find the exact π-pulse
condition for a given detuning. Finally, quantum optimal
control methods [25,47,48] typically use many degrees of
freedom to construct optimized phase and amplitude
profiles, while Floquet π pulses use only 3 degrees of
freedom (Ω, δ, and tπ).
The performance of Floquet atom optics in LMT

interferometers can be further improved by increasing
the laser intensity. Operating at a Rabi frequency of
15 MHz would raise the theoretical limit for pulse
efficiency to 99.9%, set by spontaneous emission loss
due to the finite pulse duration. Floquet pulses approaching
such efficiency can potentially support a momentum
separation of 1000 ℏk. For a practical sensor, the inter-
rogation time of the interferometer can be increased with-
out adding spontaneous emission loss by shelving the
atoms in the ground state [17]. Floquet atom optics are
applicable to other systems where a discrete set of detun-
ings must be addressed, such as dual-isotope LMT atom
interferometers where the differential recoil velocity
between the isotopes leads to Doppler detuning loss
[49,50]. Finally, these results have broad application in
two-level systems exhibiting strong drive Rabi dynamics
over a wide range of operating parameters.
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