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We report evidence for nonlinear modes in the ringdown stage of the gravitational waveform produced
by the merger of two comparable-mass black holes. We consider both the coalescence of black hole
binaries in quasicircular orbits and high-energy, head-on black hole collisions. The presence of nonlinear
modes in the numerical simulations confirms that general-relativistic nonlinearities are important and must
be considered in gravitational-wave data analysis.
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Introduction.—The birth of gravitational-wave (GW)
astronomy [1] marks a new era in the exploration of
strong-field gravity [2,3]. As the simplest macroscopic
objects cloaking curvature singularities, black holes (BHs)
play a special role as astrophysical laboratories to test
gravity and to search for new physics [4–9]. The structure
and dynamics of BHs in our Universe is well described by
the two parameters (mass M and angular momentum J)
characterizing the Kerr metric. In general relativity, the
perturbed BHs formed in a binary merger approach a
stationary state by emitting GWs in a discrete set of
characteristic quasinormal modes (QNMs) with complex
frequencies determined only by M and J. The “black hole
spectroscopy” program consists in observing these “ring-
down”waves, measuring the QNM frequencies, using them
to estimate mass and spin [10], and (if more than one mode
can be observed) test that the remnant is indeed consistent
with a Kerr BH [11–15]. The observability of QNMs
depends crucially on their excitation in the merger process.
Even within linear perturbation theory, where one only
considers linear metric perturbations to Einstein’s equations
in the Kerr background, determining which modes are
excited is a formidable problem [16–25].
General relativity is an intrinsically nonlinear theory. The

merger of two comparable-mass BHs leading to a perturbed
Kerr BH is one of the most violent processes in the

Universe, where these nonlinearities should play an impor-
tant role. It is therefore surprising that merger simulations
in numerical relativity result in a very smooth transition
from inspiral to merger and ringdown [26,27]. Where are
the nonlinearities of general relativity?
This state of affairs has led many (including some of us)

to conjecture that nonlinear effects may be hidden behind
the horizon, suppressed by the presence of a photonsphere,
or even absent altogether (see e.g., [28–37] and references
therein). In this Letter, we show that merger simulations of
BH binaries of comparable masses in quasicircular orbits
(as well as high-energy, head-on BH collisions) do, in fact,
excite nonlinear modes in the ringdown stage.
Second-order quasinormal modes.—In BH perturbation

theory, the GW strain and the Newman-Penrose scalar Ψ4

produced by a BHmerger at late times can be approximated
by a linear combination of damped sinusoids (in addition to
a subdominant power-law tail as well as retrograde QNMs,
which we disregard here) [14–17],

rhð1Þðt; θ;ϕÞ ¼
X

nlm

Anlme−iðωnlmtþϕnlmÞSlm; ð1Þ

where r is the (luminosity) distance from the source.
The spin-2 spin-weighted spheroidal harmonics Slm ¼
Slmðθ;ϕ; χωnlmÞ depend on the angular variables ðθ;ϕÞ,
on the complex QNM frequencies ωnlm, and on the
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dimensionless spin χ ¼ J=M2 of the remnant BH [38]. This
expression, found by solving the Teukolsky equation [39],
is valid when the GW amplitude is small enough that one
can linearize Einstein’s equations in the Kerr background.
At second order in the GW amplitude one finds

similar equations for the second-order perturbations hð2Þ,
now sourced by first-order quantities [40–47]. Let k be a
generic mode, which can be either a first-order mode
(k ¼ ki ¼ limini) or a higher-order mode. We will denote
a second-order mode sourced by the first-order modes
k1¼l1m1n1 and k2¼l2m2n2 as k ¼ k1 × k2 ¼ l1m1n1 ×
l2m2n2. From a waveform modeling point of view, the
second-order modes are just damped sinusoids, like the
first-order modes. Spin-weighted spherical harmonics,
rather than spheroidal harmonics, are commonly used
for waveform extraction in numerical relativity [48].
In our analysis, the index k will belong to a set
I ¼ fl1m1n1;l2m2n2;…limini × ljmjnj…g containing
all the indices of the QNMs present in the lm spin-2
spin-weighted spherical harmonic component. Then a
ringdown waveform including both first- and second-order
modes can be schematically written as

rhð2Þðt; θ;ϕÞ ¼
X

lm

X

k∈I
Ak;lme−iðωktþϕk;lmÞYlm; ð2Þ

where Ak;lm and ϕk;lm are the amplitude and phase of
the kth (linear or nonlinear) mode found in the lm
spin-weighted spherical harmonic component. Note that
Al1mn;l2m could be nonzero even if l1 ≠ l2 because the
spheroidal harmonic Sl1m is not necessarily orthogonal to
the spherical harmonic Yl2m, even if l1 ≠ l2 [48].
Because second-order QNM frequencies are sourced by

first-order modes, their frequencies, amplitudes and phases
are expected to obey the relationships [42–47]

ωki×kj ¼ ωki þ ωkj ; ð3aÞ

Aki×kj;l1m1
∝ Aki;l2m2

Akj;l3m3
; ð3bÞ

ϕki×kj;l1m1
¼ ϕki;l2m2

þ ϕkj;l3m3
þ constant: ð3cÞ

Second-order modes are a robust prediction of the
perturbative expansion in general relativity. Other non-
linearities in the ringdown, such as the memory effect [49]
or absorption-induced mode excitation [50], have previ-
ously been observed in simulations. However nonlinear
QNMs have never been confidently identified until
recently [51], with the exception of pioneering work by
London et al. [45] using greedy fitting algorithms.
Second-order modes in merger simulations.—We have

looked for the second-order modes in two sets of binary BH
merger simulations. The first set consists of ultrarelativistic
head-on collisions of equal-mass, nonspinning BHs with
different boosts γ, similar to the sequences considered in

Refs. [52,53]. In this one-parameter family of solutions the
amplitude of the linear mode increases with the boost
parameter γ, so the amplitude of the second-order modes
is also a monotonic function of γ. Axial symmetry allows
us to simulate this problem in two dimensions with
GRCHOMBO [54,55] by applying dimensional reduction
[56–58], thus saving computational time and allowing
for better accuracy relative to previous work [59]. As
the quadratic modes are sourced by a product of two first-
order modes, and quadratic contributions (proportional to
Ylimi

Yljmj
) overlap with Yliþljmiþmj

, we will look for the
limini × ljmjnj mode in the li þ ljmi þmj ringdown
waveform [43,45,47]. For head-on collisions, we will be
fitting rΨ4 ¼ rḧ instead of h, and all of the reported
amplitudes refer to rΨ4. In this case the 200 mode
dominates the ringdown of the nonspinning remnant [52],
so we focus mainly on the 200 × 200mode in the lm ¼ 40
waveform.
The second set of simulations consists of quasicircular

mergers of binary BHs with different mass ratios from
the publicly available SXS waveform catalog, simulated
in (3þ 1)-dimensions with the spectral code SPEC [60].
Recent waveforms produced using Cauchy characteristic
extraction [61–63] may improve the quality of our fits, but
the relatively small set of publicly available waveforms
does not adequately cover the relevant parameter space
for our study. For quasicircular mergers the 220 and 330
modes are typically dominant (with their amplitudes
depending on the mass ratio and spins of the binary),
and we focus our search on (i) the 220 × 220 mode in the
lm ¼ 44 waveform, and (ii) the 220 × 330 mode in the
lm ¼ 55 waveform.
Identifying QNMs in a waveform can be challenging,

partly because of their rapid decay; for nonspinning BHs,
their quality factor is of order ∼3 [14]. The search for
subdominant modes, which decay faster, requires some
care. Even if their inclusion yields smaller fit residuals,
consistency checks are crucial to avoid overfitting. In this
Letter we fit the waveforms by a linear combination of
damped sinusoids, as in Eq. (2), using a least-squares fitting
algorithm. The amplitude and phase of each mode are
always free fitting parameters, while the complex QNM
frequencies are either free or fixed depending on the mode,
as shown in Fig. 1 and explained below.
We first try to find the second-order modes without

assuming knowledge of their QNM frequencies, as follows.
We consider the QNM frequencies as free fitting param-
eters, and we fit the waveform with a different number of
QNMs as we vary the starting time of the fit tstart. If a fitted
QNM returns a frequency that is consistent with a linear
mode expected to exist in the waveform over a wide range
of tstart, we assume that the mode is there. We then fix the
frequency of that QNM (as calculated in BH perturbation
theory) in our fit and we add more QNMs with free
frequencies to search for additional modes. We iterate until
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we do not see returned frequencies that are consistent with
any linear modes. For head-on high-energy mergers,
we find a combination of the modes 200; 400…10 00 in
the lm ¼ 40 waveform due to numerical contamination
between modes. For the SXS waveforms, we only con-
fidently identify the 440 mode in the lm ¼ 44 multipole,
and the 550 mode in the lm ¼ 55 multipole (out of all
possible linear modes). With these first-order modes
identified, we use a fitting model that consists of all such
modes (with fixed frequencies) to search for additional
higher-order modes by adding one more damped expo-
nential with free frequency. As shown in the top-row panels
of Fig. 1, when we vary tstart relative to a reference time t0
(defined to be the time of peak luminosity of the dominant
lm ¼ 22 multipole), the free mode hovers around the
expected second-order mode frequency (from left to right:
ω200×200, ω220×220, or ω220×330, respectively). We do not
expect the free mode frequency to converge exactly to the

expected frequency due to numerical noise and contami-
nation from other effects (such as additional nonlinearities)
in the waveform, especially for modes that decay signifi-
cantly faster than the dominant mode. In the Supplemental
Material [64], we show through a controlled experiment
that a free frequency hovering near the target mode is the
expected behavior in the presence of (small) unaccounted
additional modes. We also searched for the 200 × 400
mode in the head-on simulations. The results (which are
not as clean as those for the 200 × 200 mode, because
200 × 400 is subdominant) are shown in the Supplemental
Material [64]. Having established the presence of nonlinear
modes in the simulations, we now perform further checks to
verify their physical nature.
Amplitude consistency check.—We cannot exclude a pri-

ori that the new mode we found is in accidental agreement
with the expected second-order QNM frequency. A non-
trivial consistency test requires that, in addition to the

FIG. 1. Evidence for nonlinear effects in the ringdown. Left: search for the 200 × 200 mode in the lm ¼ 40 multipole of
ultrarelativistic head-on mergers; center: 220 × 220 mode in the lm ¼ 44 harmonic of quasicircular mergers with low mass ratio
q ≤ 1.5; right: 220 × 330 mode in the lm ¼ 55 harmonic of quasicircular mergers with 1.25 ≤ q ≤ 2. We highlight in brighter colors
the results for γ ¼ 1.5 (left), q ¼ 1.22 (the “SXS:BBH:0305” simulation, center) and q ¼ 1.88 (“SXS:BBH:0403” simulation, right),
while we plot the results for all other simulations in gray. Top row: search for the second-order mode frequency. We use a mode with a
variable complex frequency in our fitting model to search for the expected second-order modes, and we use modes with fixed
frequencies (black solid circles) to remove the contribution from linear modes when they are present. The color scale (top bar) represents
different starting times of the fit. For quasicircular mergers, the labeled modes correspond to those of the remnant BH in the highlighted
simulation. The location of the target mode for other simulations may be slightly different, because it depends on the remnant spin.
Second row: fractional deviation jδωj of the fitted complex frequency with respect to the expected second-order mode. Third row:
amplitude of the second-order mode when tstart is varied across a window of length T0 centered around the value of minimum jδωj, topt,
and the second-order mode frequency is fixed to its expected value in the fitting model. Bottom row: same as the third row, but for the
phase of the second-order mode.
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frequency, the amplitude of the second-order modes
should be consistent across different fitting ranges.
To check this, we first look for the “optimal starting
time,” topt, for which the fractional deviation between
the fitted and expected complex frequencies, i.e.,
jδωj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðωr −ϖrÞ=ϖr�2 þ ½ðωi −ϖiÞ=ϖi�2

p
, has a mini-

mum. In the three cases of interest,ϖ ¼ ω200×200, ω220×220,
or ω220×330, respectively. Then we assume that the mode
exists, we fix the frequency to the expected value in our
fitting model, and we check the consistency of the fitted
amplitude. More explicitly, we check whether the recov-
ered amplitude has an error smaller than 10% when tstart
varies within a window of length T0 centered around topt,
where T0 is the period of oscillation of the fundamental
mode across all lm multipoles (T0 ¼ T200 for head-on
mergers, and T0 ¼ T220 for inspirals). We choose this value
of T0 because it is at least two times larger than the period
of the second-order mode that we are searching for.
This threshold is further justified in the Supplemental
Material [64] by studying the impact of the numerical
noise in the simulations on the quantities of interest. Later
times are excluded because the second-order mode falls
below the numerical noise floor.

We find that all the waveforms we considered satisfy this
requirement on the amplitude. We also checked that the
amplitudes obtained from a model with free frequency are
consistent with those where the frequency is fixed, albeit
with larger fluctuations, as expected. Independently of the
chosen tstart, we use the convention Ak;lm ≡ Ak;lmðtpeakÞ. In
other words, we take into account the known exponential
time decay by extrapolating the fitted amplitudes back
towards the peak of the dominant multipole.
Second-order amplitude dependence.—As a more strin-

gent check, we can verify whether the recovered second-
order mode amplitudes follow the dependence predicted in
Eq. (3b) across different simulations. For each simulation,
we extract the second-order mode amplitudes by taking the
mean of the amplitude within the T0 starting time window
mentioned above. We extract the first-order mode ampli-
tudes after tstart − t0 ¼ 25M, when nonlinearities and over-
tones have died out. We estimate the errors on the
amplitudes as detailed in the Supplemental Material [64].
In Fig. 2 we plot the second-order mode amplitudes

versus their first-order counterparts on a log-log plot. The
data are consistent with a power-law dependence when the
errors are taken into account. The slope of the fitted line for

FIG. 2. Dependence of the second-order mode amplitude (left and middle columns) and phases (right column) on the amplitudes of the
first-order modes sourcing them. The crosses are the amplitudes or phases extracted from simulations with different boost (left column)
or mass ratio (center and right columns). The width and height of the crosses correspond to the errors. Blue crosses represent simulations
where the two BHs are initially nonspinning, while golden crosses represent those with at least one spinning BH. The gray dotted line is
the expected relationship between the first and second-order values with the slope fixed to either 1 or 2; the deep gray dashed line is a fit
to the data with the slope unfixed. The phase dependence for head-on simulations is shown in the Supplemental Material [64].
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A200×200 vs A200 (in the head-on waveforms) and A220×220
vs A220 (in the SXS waveforms) is found to be consistent
with 2 within 1σ, as expected. Similarly, the slopes of the
fitted lines for A200×400 vs A200A400 (for head-on wave-
forms) and A220×330 vs A220A330 (for SXS waveforms) are
consistent with 1. Unsurprisingly, the 200 × 400 mode
search results in head-on mergers are not as clean as the
200 × 200 results (see Supplemental Material [64]).
Because of numerical errors in the simulations, we can

confidently identify the 220 × 220 mode only for SXS
waveforms with mass ratio q ≤ 1.5. Since q varies over a
small range, the amplitudes of the 220 mode inferred from
different simulations are similar to each other, and the
amplitude of the 220 × 220 mode does not vary much
across different simulations. For this reason the data points
are relatively close to each other, and the error on the slope
is larger than in the other cases we considered.
Phase consistency.—Similar to the amplitude tests, we

can check the consistency of our fits with the fitted phases
of the second-order modes. As shown in the bottom row of
Fig. 1, the fitted phases of the second-order modes vary by
less than 10% × 2π within the T0 window.
Moreover, as the second-order modes are sourced by two

linear QNMs, the relationship in Eq. (3c) between the
phases of the modes should hold, modulo (possibly) a
constant phase difference that can only be computed
by a Green’s function calculation. In the right column of
Fig. 2 we show that the phases extracted from the SXS
simulations follow the expected relationship. In the
Supplemental Material [64] we show similar plots for
head-on mergers. The error bars are larger, but the results
are still consistent with expectations.
Conclusions.—We have shown that nonlinear QNMs are

excited in simulations of comparable-mass BH binary merg-
ers in quasicircular orbits, as well as in high-energy head-on
BH collisions. The detectability of nonlinear QNMs may
require next-generation detectors, and it will be addressed in
future work. In any case, the presence of nonlinear modes
demonstrates that nonlinearitiesmust be taken into account in
the modeling of GWs from binary BH mergers, and it
suggests that they may play an important role during the
violent merger phase. This has far-reaching consequences for
our understanding of strong-field BH dynamics and for the
observational BH spectroscopy program.
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